ENHANCEMENT ON 5G CELLULAR SYSTEM'S FRAMEWORK & ARCHITECTURE TO SUPPORT MISSION CRITICAL COMMUNICATIONS ENCOMPASSING MULTIMEDIA DATA AND VOICE COMMUNICATIONS

NOREHAN YAHYA

ASIA e UNIVERSITY 2021

PhD 2021

NOREHAN YAHYA

ENHANCEMENT ON 5G CELLULAR SYSTEM'S FRAMEWORK & ARCHITECTURE TO SUPPORT MISSION CRITICAL COMMUNICATIONS ENCOMPASSING MULTIMEDIA DATA AND VOICE COMMUNICATIONS

NOREHAN YAHYA

A Thesis Submitted to Asia e University in Fulfillment of the Requirements for the Degree of Doctor Of Philosophy (Information & Communication Technology)

July 2021

Abstract

Public Safety Networks (PSN) provide mission critical communications (MCC) to agencies providing emergency services like police, fire and ambulance. Most PSN Network Operators, including PMR A, utilize TETRA PSN systems for their voice communications, and cellular LTE for their broadband needs. To meet these purposes, they operate dual PSN hybrid network (LTE/TETRA), which are cost prohibitive and operationally inefficient. PMR A aspires to have a single PSN network using Cellular system that meets their MCC requirements provided that the technical gaps on the service offerings can be adequately addressed. PMR A characterized 'easy to use push to talk services with unlimited users for Groupcalls' as the most critical technical gap. To realize the single PSN MCC network aspiration, the opportunities made available from cutting edge mobile solutions delivered over telecommunication's new 5G Cellular Network Architecture will need to be fully exploited. Pursuant to this, the research objectives and methodology, were aimed at addressing gaps by providing 5G design recommendations to meet specific communication needs of MCC for multiple agencies over a single PSN network. The objectives and methodology are summarized as follows:

Objective 1: *Identify* MCPTT and MCC Performance Gap. Qualitative study and 5G Lab experiments were conducted to validate the 5G architecture technical gaps.

Objective 2: *Develop* 5G commercial network enhancements to support MCC. Qualitative study was used to develop and validate the 5G PSN architecture.

Objective 3: *Improve* the 5G PSN design using SDN to support multiple agency use. Qualitative study was used to develop and validate the 5G PSN architecture. The Theoretical Framework of this research was adapted from industry framework comprising of 5G Cellular system network elements (NE), inclusive of 5G Core, 5G Access Network, 5G QoS, 5G Applications and 5G Security. 'The Open Group Architecture Framework' (TOGAF) approach was adopted for this qualitative research with 3GPP used as the standards benchmark. The most crucial research finding was, the 5G PSN network architecture support for 'simple to use MCPTT with unlimited users for Group Calls', was reflected as the *deciding factor* for migration from TETRA to 5G PSN network. To bridge this gap, and all the technical gaps acknowledged by industry experts, the research recommendations included enhancements to 5G NEs via implementation of '5G PSN Developmental Framework & Architecture' that capitalizes on 3GPP's 'Group Communication System', 'evolved Multimedia Broadcast Multicast System' and 'User & Bearer Prioritization Tool' architectures, incorporated with Network Slicing and Network Function Virtualization, delivered over Software Define Networks With this novelty, the research concluded that, migration towards a single 5G PSN deployment by PMR A, could be accelerated to meet evolving MCC needs.

APPROVAL

I certify that I have supervised / read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in quality and scope, as a thesis for the fulfillment of the requirements for the degree of Doctor of Philosophy.

Professor Ts. Dr. Titik Khawa Abdul Rahman Supervisor -

Professor Dr. Mahamod Ismail Universiti Kebangsaan Malaysia **External Examiner 1**

Professor Dr. Kaharudin Dimyati University Malaya External Examiner 2

Associate Professor Dr. Muhammad Suryanegara Universitas Indonesia Internal Examiner

Professor Dr. Siow Heng Lock Chairman, Examination Committee

This thesis was submitted to the School of Education, Asia e University and is accepted as fulfillment of the requirements for the degree of Doctor of Philosophy.

Dr. Titik Khawa Abdul Rahman Professor **T**s Dean,

School of Science And Technology School of Graduate Studies

DECLARATION

I hereby declare that the thesis submitted in fulfillment of the Doctor Of Philosophy (Information & Communication Technology) degree is my own work and that all contributions from any other persons or sources are properly and duly cited. I further declare that the material has not been submitted either in whole or in part, for a degree at this or any other university. In making this declaration, I understand and acknowledge any breaches in this declaration constitute academic misconduct, which may result in my expulsion from the programme and/or exclusion from the award of the degree.

Name of Candidate:

Norehan Yahya

hu

Signature of Candidate

Date: July 2021

Copyright by Asia e University

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Professor Dr. Titik Khawa Abdul Rahman, of the Doctor Of Philosophy (Information & Communication Technology) at Asia eUniversity. She was always supportive in giving me excellent guidance regarding my research.

I would also like to thank the Telecommunications and Public Safety Network experts who were involved in the validation survey for this research project from Sapura, Celcom, DiGi, Maxis and Telekom Malaysia as well as system vendors from Nokia, Ericsson, Huawei, ZTE, Motorola and Tait. My appreciation also goes to 5G Open Lab in Cyberjaya for allowing me to conduct lab tests in their live 5G Lab system. Without their participation and input, the 5G experiments as well as qualitative survey could not have been successfully conducted.

I wish to also express my deep appreciation to Md Zulkifli Nurani, the Vice President of Exxon Mobil Malaysia, for his opinion regarding mission critical communications in the oil and gas sector and how the user requirements can be enhanced.

I would also like to acknowledge my family and everyone involved for their very valuable views on this thesis as well as their continuous encouragement throughout this research period. This accomplishment would not have been possible without them. Thank you.

Chapter	Page
Abstract	i
APPROVAL	iii
DECLARATION	iv
ACKNOWLEDGMENTS	vi
Table of Contents	vii
List of Tables	xi
List of Figures	xii
List of Abbreviations	xiii
1. CHAPTER I: INTRODUCTION	
1.1 Background of the Study	1
1.1.1 P25 Standards Overview	
1.1.2 TETRA Standards Overview	4
1 1 3 LTE 4G 3GPP Standards Overview	5
1 1 4 Key Design Considerations For Public Safety Network	
1 1 5 Previous Academic Studies on 5G PSN	,
1.2 Statement of the Problem	00
1.2 Statement of the Problem	
1.4 Pasaarch Methods	10
1.4 Research Methods	13
1.5 Scope and Limitations of Kesearch	10
1.0 Justification of Thesis Charters	
1.7 Organization of Thesis Chapters	
1.8 Chapter Summary	
2. CHAPTER II: REVIEW OF LITERATURE	
2.1 Introduction	
2.1.1 Key Terms	29
2.2 Theoretical Framework	32
2.2.1 Theoretical Framework performance criteria elements	
2.3 Public Safety System Overview	35
2.3.1 Public Safety current networks and enhancement plans	37
2.4 Legacy Public Safety System P25	
2.4.1 Standards – P25	40
2.4.2 Introduction to P25 Trunking	40
2.4.3 Network Architecture – P25	41
2.5 Legacy Public Safety System TETRA	42
2.5.1 Introduction to TETRA	43
2.5.2 TETRA Network Architecture	43
2.5.3 Enhanced TETRA (TEDS)	47
2.6 Fourth Generation of Mobile Technology or 4G	47
2.6.1 Introduction to 4G or LTE	47
2.6.2 Network Architecture for 4G – Core and Radio Access	48
2.6.3 The User Equipment (UE)	53
2.6.4 LTE 4G for Public Safety	54
2.6.5 Mission critical design requirements for 4G.	
2.6.6 Ouality of Service for 4G PSN	
2.7 Fifth Generation of Mobile Technology or 5G Network Systems	
2.7.1 Introduction to 5G systems	57

Table of Contents

2.7.2 Network Architecture for 5G systems – Core and Radio Access Netw	vork58
2.7.3 Advance capabilities for 5G systems (including SDN & Network Sli	cing)66
2.7.4 The User Equipment (UE) for 5G systems	
2.7.5 Mission critical requirements for 5G systems	
2.7.6 Quality of Service for 5G systems	71
2.8 Industry Standards Group – 3GPP Standards Releases	72
2.9 Chapter Summary	73
3. CHAPTER III: METHODOLOGY	
3.1 Introduction	76
3.2 Research Theory	77
3.3 Research Framework	
3.3.1 Objective 1 – Research Framework 1	
3.3.2 Objective 2 – Research Framework 2	
3.3.3 Objective 3 – Research Framework 3	
3.3.4 Research Process	
3.3.5 Research Variables for MCPTT over 4G LTE	
3.3.6 Research Variables for MCPTT over 5G	
3.3.7 Research Variables for MCPTT over 5G SDN network slicing	95
3.4 Research Instrumentation	
3.4.1 Interview Questionnaire	96
3.4.2.5G Test Bed and Test Plan	99
3.5 Data Collection	102
3.6 Data Analysis	103
3.7 Permissions ethics clearance and informed consent	106
3.8 Gantt Chart - Work Schedule	107
3.9 Chanter Summary	109
Λ CHAPTER IV: IDENTIFY PERFORMANCE GAP IN 5G SYSTEMS	107
4. CHAITERTV. IDENTIFTTERFORMANCE OAT IN 50 5151EWS.	
4.1 Introduction A 2 Lease VDSN MCC Network TETP A	113
4.2 Legacy I SN MCC Network - TETRA	113
4.2.1 TETRA Performance	113
4.2.2 TETRA System Architecture	117
4.2.5 TETRA System User Registration (Can Set Up) and Woomity	120
4.2.4 Q05 Assessment in TETRA Systems	120
4.2.5 KF1 101 Q05 evaluation in TETRA Systems	123
4.2.0 TETRA Network Architecture & Services Summary	124
4.5 LTE Commercial Network	123
4.5.1 LTE Network Ferrormance for Much Services	120
4.5.2 LTE SGPP Releases for Public Safety Network	127
4.3.5 LTE Commercial System User Registration and Call Set Up	129
4.3.4 QoS Assessment in LTE Systems compared to TETRA	130
4.3.5 Security Assessment in LTE Systems	
4.3.6 MCC Performance Gap between LTE 4G & TETRA Services	
4.3.7 LTE 4G Network Architecture and Service Summary	
4.4 5G Commercial Network	
4.4.1 5G Network Performance Scope for MCC	
4.4.2 5G Network Architecture Gaps	
4.4.3 5G System Registration and Call Set Up	
4.4.4 QoS assessment in 5G Systems compared with TETRA	
4.5 Results on 5G Test Lab Experiment	140
4.5.1 5G Live Test Lab Experiment Objective & Test Scope	141

4.5.2 5G Experiment Configuration and Lab Architecture	.142
4.5.3 5G Experiment Results and Findings	.145
4.6 MCPTT and MCC Technical Gap Findings	.151
4.6.1 MCPTT and MCC Performance Gap Findings	.152
4.6.2 5G Architectural Gap Findings	.156
4.7 Chapter Summary	.158
5. CHAPTER V: DEVELOP 5G ENHANCEMENT AS ONE MCC NETWORK	161
5.1 Introduction	.161
5.2 5G System Design Enhancements by addressing technical gaps	.164
5.2.1 Results on Current 5G Design Enhancement – NE1 5G Core Systems	.168
5.2.2 Results on Current 5G Design Enhancement – NE2 Access Network	.172
5.2.3 Results on Current 5G Design Enhancement – NE3 QoS	.174
5.2.4 Results on Current 5G Design Enhancement – NE4 MCC Services	.178
5.2.5 Results 5G System Design Enhancement - NE5 Security	.182
5.3 5G Commercial Network Enhancement for PSN	.183
5.4 Chapter Summary	.185
6. CHAPTER V1: IMPROVE 5G MCC DESIGN FOR MULTI AGENCY USE	188
6.1 Introduction	.188
6.2 5G System Design Improvements to support Multi Agency	.191
6.3 Results on 5G Design Improvement – NE1 5G Core System	.194
6.3.1 5G Network Slicing – NE1 5G Core System	.195
6.3.2 Software Defined Network or SDN – NE1 5G Core System	.197
6.3.3 Network Function Virtualization or NFV – NE1 5G Core System	.200
6.4 Results on 5G Design Improvement – NE2 5G Access Network & MOCN	.202
6.5 Results on 5G Design Improvement - NE3 End to end QoS	.205
6.5.1 PDU Sessions and QoS Flows - NE3 E2E QoS	.206
6.5.2 5G Core Network & QoS - NE3 E2E QoS	.207
6.5.3 Network Slicing with NFV - NE3 E2E QoS	.210
6.6 Results on 5G Design Improvement – NE4 Network Slicing for MCX	.210
6.7 Results on 5G Design Improvement – NE5 Security	.213
6.8 5G System Improvement for Multi Agencies MCC Findings	.213
6.9 Results Summary	.216
7. CHAPTER VII: RECOMMENDATIONS ON 5G ENHANCEMENT FOR	۲ PSN
IMPLEMENTATION, CONCLUSIONS & FUTURE RESEARCH	219
7.1 Introduction	.219
7.2 Research Findings & Requirements	.219
7.3 Recommendations Overview	.236
7.4 Recommendation 1: 5G PSN System Developmental Framework	.238
7.5 Recommendation 2 : 5G PSN System Architecture	.245
7.5.1 5G Network Infrastructure Layer	.250
7.5.2 5G Network Service Layer	.254
7.5.3 5G Quality of Service	.261
7.6 Recommendations – How does the 5G PSN System Architecture functions?	.266
7.7 Research Conclusion	.271
7.7.1 Conclusion Objective 1: Identify MCX Performance Gap	.275
7.7.2 Conclusion Objective 2: Develop 5G enhancement to support MCC	.277
7.7.3 Conclusion Objective 3: Improve 5G PSN design for Multi PSA use.	.279
7.8 Recommendations for Future Research	.281
REFERENCES	284
APPENDICES	297

Appendix A – Telecommunications LTE Network Architecture	298
Appendix B – P25 & TETRA Network Architecture	302
Appendix C – Spectral Efficiency 4G-LTE & 5G-NR	312
Appendix D – QoS for 4G and 5G Network Systems	314
Appendix E – 3GPP Mobile System Evolution & Comparison	317
Appendix F – Qualitative Survey Questions	318
Appendix G – P25, TETRA, 4G & 5G technology comparison summary	319
Appendix H – 5G Test Bed and Research Test Plan	325
Appendix I – Erlang C Table For Blocked Calls Queued	326
Appendix J – 3GPP Standards for Mission Critical Services	328
Appendix K – 5G System Architecture for Mission Critical Services in 3GPP	334
Appendix L – 5G In a Box for Mission Critical Services	341
Appendix M - TETRA System User Registration (Call Set Up) and Mobility	345
Appendix N – PSN Performance Counters	357
Appendix O – 4G LTE Public Safety System Design & QoS	367
Appendix P – 5G Public Safety System Design & QoS	377
Appendix Q – 5G and 4G Security Architecture	390
Appendix R – 5G interworking with non-3GPP PTT	394
Appendix S – 5G for single MCX Network	396
Appendix T – Qualitative Survey Interviews & Responses	403
Appendix U - 5G PSN MVNO Model using MOCN	404
Appendix V – Academic Research on 5G PSN	409
Appendix W – 5G Deployment Options	411
Appendix X – Broadcast radio network	412

List of Tables

Table	nge
Table 1.1: Key Areas For PSN System Design. Source: Telecoms Academy, 2016Table 1.2: Relationship between research problems and research objectivesTable 2.1: Theoretical Framework. Source: (Meakin, 2018) (Telecoms Academy, 2016)	7 11)
(110, 2008)	
Table 2.2: TETRA spectrum efficiency. Source: Nielson, 2012.	45
Table 2.3: TETRA data rate comparison. Source: Nielson, 2012.	47
Table 2.4: 5G NR frequency and waveform specifications. Source: Reysigni, 2019	04 75
Table 2.5: Technology Comparison TETRA, P25, 40, 50	/J 01
Table 2.2: Descent Framework 2	10
Table 2.2: Research Framework 2	84 00
Table 3.5. Research regional variables Sources ITU 2010	00
Table 3.4. 40 LTE research variables. Source: ITU, 2019	92 04
Table 3.5. 5G lesearch Tast Dian Intro 5G	102
Table 3.0. Research Framawork Summary	1102
Table 4.1: Qualitative Survey Desponses, from Network Provider	114
Table 4.1. Qualitative Basponses from Network Suppliers	114
Table 4.2: TETRA Network Architecture & Services Source: Section 2.5.2 Survey	125
Table 4.4: Performance gap between PMP and 4G. Source: 3GPP Survey	132
Table 4.5 : I TE AG Network Architecture & Services Source: Survey	134
Table 4.6: 5G NSA Experiment Network Configuration & Scope	1/13
Table 4.7: 5G Live Lab Test 1 Results	145
Table 4.8: 5G Live Lab Test 7 Results	147
Table 4.9: 5G Live Lab – Test Result Summary	148
Table 4.10: MCC Service Performance Gan Comparison Source (Survey, 5G Lab)	154
Table 4.11 · Results on MCPTT and MCC System Architecture Gan	156
Table 4 12: 5G System Performance Gan Results	160
Table 5.1: Survey Results - Network Providers	162
Table 5.2: Survey Results - Network Suppliers	163
Table 5.3 : 5G Design Enhancements Results	186
Table 6.1 : Network Provider Survey Responses	189
Table 6.2 : Network Supplier Survey Responses	
Table 6.3: 5G Enhancement Framework for Multi-Agency MCX	
Table 7.1 : Research Finding Summary	
Table 7.2: TETRA Group Call Features for 5G PSN. Source: Appendix J	
Table 7.3 : 5G PSN Network KPI Proposal. Source: Appendix N	244
Table 7.4: eMBMS Bearer for 5G Broadcast: Adapted from 3GPP, 2019c	259

List of Figures

Figure	Page
Figure 1.1: PSN and MCC Concept & Ecosystem used in Thesis	3
Figure 1.2: LTE as a Public Safety Communications network. Source: 3GPP, 2016	6
Figure 2.1: P25 Trunking Group Calls. Source: Radio Academy, 2019	41
Figure 2.2: TETRA Network Architecture. Source: Delgado, 2014	44
Figure 2.3: Channels per carrier. Source: Nielson, 2012.	45
Figure 2.4: 4G Network Architecture & Interfaces. Source: 3GPP, 2016	49
Figure 2.5: The 4G Evolved Packet Core or EPC. Source: 3GPP, 2016	49
Figure 2.6: EPC and E-UTRAN functions. Source 3GPP, 2016.	51
Figure 2.7: The 4G E-UTRAN. Source: 3GPP, 2016	51
Figure 2.8: 5G Core System Architecture. Source: (3GPP, 2019a), (Mademan, 2017	7)59

Figure 2.4: 4G Network Architecture & Interfaces. Source: 3GPP, 2016	49
Figure 2.5: The 4G Evolved Packet Core or EPC. Source: 3GPP, 2016	49
Figure 2.6: EPC and E-UTRAN functions. Source 3GPP, 2016	51
Figure 2.7: The 4G E-UTRAN. Source: 3GPP, 2016	51
Figure 2.8: 5G Core System Architecture. Source: (3GPP, 2019a), (Mademan, 2017)	59
Figure 2.9: NG - RAN. Source: Mademann, 2017	62
Figure 2.10: NG RAN and 5G Core function split. Source: Mademann, 2017	62
Figure 2.11 : 5G Services including MC Application. Source : 3GPP	73
Figure 3.1 : Research Process & Overall Methodology	90
Figure 3.2: Gantt Chart	108
Figure 4.1: Schematic contributions to end-to-end QoS. Source: PMR A	121
Figure 4.2: Four QoS Perspectives. Source: PMR A.	121
Figure 4.3: 3GPP Evolution for Public Safety. Source 3GPP, Survey	128
Figure 4.4: 3GPP Standards for 5G MCC. Source (3GPP, 2014)	137
Figure 4.5: 5G NSA Test Lab Architecture	144
Figure 4.6: 5G Test Lab Physical Set Up	145
Figure 4.7: 5G Packet Delay and Packet Loss	147
Figure 4.8: 4G Packet Delay and Packet Loss	148
Figure 5.1: 5G Non-Standalone (NSA) option using LTE EPC. Source: 3GPP, 2019a	170
Figure 5.2: 5G Standalone (SA) configuration. Source: 3GPP, 2019a	170
Figure 5.3: 5G Standalone (SA) variations using the 5G CN. Source: 3GPP, 2019a	170
Figure 5.4: User and Bearer Prioritization Tools. Source: Adapted from Nokia	177
Figure 5.5: PSN Architecture. Source: Adapted from Nokia	180
Figure 5.6: MCPTT in 5G System. Source: Adapted from Nokia	181
Figure 6.1: 5G Network Slicing Architecture. Source: Foukas et el., 2017	196
Figure 6.2 : 5G SDN Architecture. Source: ONF, 2013	199
Figure 6.3: NFV in 5GC Architecture. Source: Mpirical, 2019	202
Figure 6.4 : MOCN MVNO Infrastructure Sharing. Source Appendix U	205
Figure 6.5: 5G System end to end Architecture. Source: Mpirical, 2019	206
Figure 6.6: PDU Sessions & QoS Flows. Source: Mpirical, 2019.	207
Figure 6.7 :Network Slicing for MCX. Source - 3GPP, 2020) / Bell Labs, 2019	212
Figure 7.1: 5G PSN Development Framework for Multi PSA-Recommendation 1	243
Figure 7.2 : 5G PSN Conceptual Architecture for Multi PSA via MVNO	248
Figure 7.3 : 5G PSN Architecture for Multi PSA – Recommendation 2	249
Figure 7.4 : Deploying Network Slices. Source Mademann, 2018	253
Figure 7.5: eMBMS in "5G PSN Architecture" Proposal.	257
Figure 7.6 : 5G PSN System Architecture Overview	267
Figure 7.7 : 5G PSN Architecture Call Flow	269

List of Abbreviations

3GPP	3rd Generation Partnership Project
4G	4 th Generation Mobile Systems (also known as LTE)
5G	5 th Generation Mobile Systems
5G AN	5G Access Network
5GS	5G System
5G NR	5G New Radio
5G NSA	5G Non-Standalone
5G SA	5G Standalone
ADC	Application Detection and Control
AF	Application Function
AMBR	Aggregated Maximum Bitrate
AMF	Access and Mobility management Function
ARP	Allocation and Retention Priority
ASP	Application Service Provider
AUSF	Authentication Server Function
API	Application Programming Interface
APN	Access Point Name
CAPEX	Capital Expenditure
CDR	Charging Data Record
CN	Core Network
cRAN	Cloud Radio Access Network
CRM	Customer Relationship Management System
CSV	Coma Separated Values
D2D	Device to Device
DL	Downlink
DPI	Deep Packet Inspection
DC	Data Centre
DC	Dual Connectivity
DL	Downlink
DRX	Discontinuous Reception
EC-GSM	Extended-Coverage GSM
E-UTRAN	Evolved Universal Terrestrial Radio Access Network
eMBMS	evolved Multimedia Broadcast/Multicast Service
eMBB	enhanced Mobile Broadband
eNB	eNodeB
gNB	gNodeB
eSIM	embedded Subscriber Identity Module
EPC	Evolved Packet Core
ePDG	evolved Packet Data Gateway
EPS	Evolved Packet System
eMBMS	Enhanced Multimedia Broadcast/Multicast Service
EPS	Evolved Packet System
FDD	Frequency-Division Duplexing
feICIC	Further Enhanced Inter-cell Interference Coordination
FR	First Responders
FMO	Future Mode Operations
GBR	Guaranteed Bit Rate

GCSE	Group Call System Enablers
GDP	Gross Domestic Product
GPRS	General Packet Radio Service
GSM	Global System for Mobile Communications
GSMA	Global System for Mobile Communications Association
GTP	GPRS Tunneling Protocol
GBR	Guaranteed Bit Rate
GCSE	Group Call System Enablers
gNB	5G Node B
GSM-R	Global System for Mobile Communications – Railways
НА	High Availability
HeNB	Home eNodeB
HSPA	High Speed Packet Access
НТТР	Hypertext Transfer Protocol
IMS IP	Multimedia Subsystem
IOPS	Isolated LTE Operation for Public Safety
ITII-R	International Telecommunications Union Radiocommunication sector
IaaS	Infrastructure as a Service
IDS	Intrusion Detection System
IMS	IP Multimedia Subsystem
IMT	International Mobile Telecommunications
I/O	
IoT	Internet of Things
IDR	Intellectual Property Rights
IDX	Internetwork Packet Exchange
	International Telecommunications Union
	International Telecommunications Union Padiocommunication sector
	Kau Darformance Indicator
KII	Key Quality Indicator
IAN	Local Area Network
	Local Area Network
LIE-A IMD	Land Mohila Dadia (sama as DMD)
	Land Widdle Radio (same as FWR)
LIE MC DTT	Mission Critical Duch to Tally
MC-PTT MCC	Mission Critical Push to Talk
MCC	Mission Critical Communications
MCE	Multi-cell/Multicast Coordination Entity
MCS	Mission Critical Services
M2M	Machine to Machine
MBMS	Multimedia Broadcast / Multicast Service
MBSFN	MBMS over a Single Frequency Network
MBR	Maximum Bit Rate
MCMC	Malaysia Communication and Multimedia Commission
MEC	Mobile Edge Computing
MIMO	Multiple Input Multiple Output
MOCN	Multi-Operator Core Network
ММТС	massive Machine Type Communications
mmWave	Millimeter Wave
MPS	Multimedia Priority Service
MS	Mobile Station

MSC	Mobile Switching Centre
MT	Mobile Termination
MTC	Machine Type Communications
MU-MIMO	Multi-User MIMO
MVNE	Mobile Virtual Network Enabler
MVNO	Mobile Virtual Network Operator
NB-IoT	Narrow Band Internet of Things
NEF	Network Exposure Function
NFV	Network Function Virtualization
NGMN	Next Generation Mobile Networks
NNI	Network-Network Interface
NRF	Network Repository Function
NSA	Non Standalone
NSSF	Network Slice Selection Function
NSWO	Non-seamless Wi-Fi offload
OEM	Original Equipment Manufacturer
OPEX	Operating Expenditure
OSS	Operations Support Systems
OTT	Over the Top
PC	Personal Computer
PCF	Policy Control Function
PCRF	Policy and Charging Rules Function
PDCP	Packet Data Convergence Protocol
PDN	Packet Data Network
PLMN	Public Land Mobile Network
PMO	Present Mode Operations
P25	Project 25
PMR	Public Mobile Radio
PPDR	Public Protection and Disaster Relief
ProSe	Proximity Services
PSA	Public Safety Agency
PSMB	Public Safety Mobile Broadband
PTToC	Push to Talk over Cellular
PWS	Public Warning System
QCI	Quality Class Indicator
QFI	QoS Flow Identifier
RAN	Radio Access Network
RAT	Radio Access Technology
RCS	Rich Communication Services
RTP	Real Time Protocol
SDN :	Software-Defined Networking,
SIM	Subscriber Identity Module
SIP	Session Initiation Protocol
SMF	Session Management Function
TCCA	Tetra Critical Communications Association
TEA	Tiny Encryption Algorithm
TETRA	Terrestrial Trunked Radio
TM Forum	Telecommunications Management Forum
TRS	Trunked Radio Systems
UE	User Equipment

UPF	User Plane Function
UDM	Unified Data Management
URLCC	Ultra Reliable Low Latency Communications
vRAN	Virtual Radio Access Network
VoLTE	Voice over LTE
WAN	Wide Area Network
WRC	World Radio Conference

1. CHAPTER I: INTRODUCTION

1.1 Background of the Study

To prevent economic losses, maintain social order, and protect the well being of the citizens during public safety and crisis recovery situations, the efficient and effective delivery of time-critical information to first responders and victims play a key role (Bonde et. al., 2015). This delivery of time-critical information is referred to as Mission Critical Communications or MCC. The MCC is delivered using Public Safety Networks or 'PS Networks'. Despite the existence of more sophisticated Mobile Cellular Communications technology, Trunked Radio Systems still remain as the preferred technology for users particularly Public Safety Agencies or 'PSA' in the market as it offers a unique combination of cost-effectiveness, reliability and features that are not offered by other commercial Cellular Communications services (MCMC, 2009). Trunked Radio System is also able to serve a broad spectrum of users, including organisations with mostly mobile workers that require person-to-person and person-to-group radio communications to coordinate and facilitate their operations. Both the private and public sectors are amongst user groups of Trunked Radio Systems. Trunked radio users can be categorised into three distinct groups (MCMC, 2009):

- a. Commercial and Light Industrial, such as hotels and transportation industry
- b. Professional/Business Critical such as utilities, oil and gas industry and
- c. Public Safety/Mission Critical used by first responders namely, police, ambulance and fire fighters.

Each group has their own needs and expectations from the systems and services

provided. The research is related to the Public Safety/Mission Critical Communications group of users. The selection of this research scope, is based on, the importance to the nation in terms of empowering our first responders to protect our communities better. And this can be achieved via improvements in situational awareness as well as life saving solution capabilities using next generation Public Safety Networks, potentially made available from cutting edge mobile solutions delivered over telecommunication's new 5G Cellular Network Architecture. Public Safety Networks (PSN) provide mission critical communications (MCC) to public safety agencies (PSA) offering emergency services such as police, fire and ambulance (Bonde et al., 2015).

As part of ensuring effective public safety support, Malaysia has deployed two PS Networks with nationwide radio coverage area using TETRA (referred as GIRN or Government Integrated Radio Network) and P25 (referred as RMPNet or Royal Malaysian Police Network) standards (MCMC, 2009). These legacy PS networks were built since 2008 and have been supporting first responders from various Malaysia PS Agencies namely Polis Diraja Malaysia (PDRM), Kementerian Kesihatan Malaysia (KKM), Jabatan Bomba & Penyelamat Malaysia (JBPM), Agensi Penguatkuasaan Maritim Malaysia (APMM), Jabatan Penjara Malaysia (JPM), Jabatan Imigresen Malaysia (JIM), Jabatan Sukarelawan Malaysia (RELA) and others. All the local Mobile Network Operators have not implemented any Public Safety Network over their commercial networks.

The PSN concept and ecosystem discussed in this Thesis covers various terminologies and associations as described in Figure 1.1. These terminologies, include, PSN (Public Safety Network), MCC (Mission Critical Communications), PSA (Public Safety Agencies), PMR (Private Mobile Radio), PMR networks (TETRA, P25), Cellular Network (4G, 5G), PSN Standards (ETSI, APCO), PSN Cellular Standards (3GPP and ITU). Further details are discussed in Chapter 2.

Figure 1.1: PSN and MCC Concept & Ecosystem used in Thesis

The PS Networks available in Malaysia namely P25 and TETRA as well as 4G Cellular Networks are described in the following sections:

1.1.1 P25 Standards Overview

P25 standard compliant technology has created the foundation for interoperable, digital, two-way wireless communications for public safety and emergency responders since 1989 and it has been deployed over two main phases, discussed as follows (ANSI, 2014) (P25, 2012):

- a. Phase 1: Supports the following
 - IMBE voice codec.
 - operate in 12.5 kHz
 - FDMA access method.
 - 4 FSK modulation
 - 9.6 kbps total channel throughput.
- b. Phase 2: Support the following
 - uses the AMBE+2 voice codec
 - aimed at improving spectral efficiency,
 - uses 2-slot TDMA scheme
 - 6 kbps for one voice channel.

The P25 legacy PS Network in Malaysia is referred to as RMPNet and is exclusively used by PDRM (MCMC, 2009).

1.1.2 TETRA Standards Overview

Terrestrial Trunked Radio or 'TETRA' is known as Trans-European Trunked Radio. It is a European standard for a trunked radio system and was specifically designed to meet public safety requirements. The TETRA standards supports the following (TCCA, 2017):

- a. TETRA Mobile Stations (MS) can communicate direct-mode operation (DMO). In emergency situations with no TETRA coverage, this feature allows direct communications between MS.
- b. Status messages and short data services (SDS) are also offered.

- c. TETRA provides for authentication of terminals, air interface encryption and end-toend encryption as part of system security.
- d. Group Calls of which a single button push will connect the user to the users in a selected call group and/or a dispatcher.
- e. Access method : Time-Division Multiple Access (TDMA) with four user channels on one radio carrier and 25 kHz spacing between carriers.

1.1.3 LTE 4G 3GPP Standards Overview

The general trend in most countries reflects 4G LTE as the preferred Next Generation Public Safety network (TCCA, 2017).

However, is 4G LTE able to meet Mission Critical Communications requirements? According to Telecoms Academy LTE as a Public Safety Network does offer a lot of advanced communication features involving data, however the voice features are still being developed to meet PS expectations, and this architecture is reflected in Figure 1.2 and discussed as follows:

- a. LTE specific enhancements for Public Safety communications
 - User friendly push to talk or 'walkie talkie' feature
 - Large scale push to talk group calls
 - Device to device or 'Direct Mode' voice communications
 - Network resilience
- b. These capabilities are defined in LTE 3GPP Release 12 as well as 3GPP Release 13.
- c. Voice over LTE or VoLTE requires major enhancements to meet PS requirements
- d. Group Communications

- PTT and Group Communications is fundamental to most Public Safety Communications applications
- Group Communications (GC) are further defined at two levels GC System Enablers for LTE (R12) and Mission Critical Push To Talk or MCPTT (R13)
- The Group Communications System (GCS) Architecture is shown in Figure 1.2 and described in further detail in Appendix A (LTE Network Architecture)
- The GCS supports Unicast services as well as Multicast Broadcast

Figure 1.2: LTE as a Public Safety Communications network. Source: 3GPP, 2016

Considering voice features offered by 4G LTE are still being developed to meet PS expectations, Public Safety Agencies are still relying on PMR systems mainly P25 and TETRA for mission critical voice communications (TCCA, 2017). In summary, there will not be a 'one size fits all' solution. It's important to understand that current PS Network solutions such as TETRA and P25 will be still be required for the foreseeable future to deliver reliable mission critical voice and messaging services.