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Abstract

An efficient reactive power management is important in providing secured operation for a power system in terms of maintaining its stability
condition. Lack of safe operating margin and reactive power support were known to cause a system to operate in an unstable voltage condition.
Hence, voltage stability improvement must be planned properly so that the likeliness to instability event could be determined before the more
severe event of blackout could occur in a system. For that reason, the application of the developed a new optimization technique namely Adaptive
Tumbling Bacterial Foraging (ATBO) was to obtain the most possible optimal Reactive Power Planning (RPP) solution. The objective of RPP
problem was not only to minimize the total power losses in a system but was also extended in terms of voltage stability and now termed as security
constrained RPP (SCRPP). In order to ensure maximum benefit while ensuring secure operating condition and minimum impact to environment,
the proposed ATBFO and Multi objective ATBFO (MOATBFO) were utilized to solve for the single and multi-objective for SCRPP issues.
The performance of the proposed techniques were comprehensive analyzed between two other familiar optimization methods known as original
Bacterial Foraging Optimization (BFO) algorithm and Meta heuristic Evolutionary Programming (Meta-EP) for standard IEEE 57 bus system.
From the results it shows that the multi objective ATBFO optimization is able to give better overall improvement among all objective functions of
SCRPP.
c⃝ 2018 The Korean Institute of Communications and Information Sciences (KICS). Publishing Services by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Many countries have claimed that millions of dollars was
lost due to voltage collapse events. The voltage instability
may occur in a network if sufficient reactive power support
is not given to the stressed busses [1]. Major countermeasures
correspond to voltage stability control are categorized into pre-
ventive and corrective actions. The corrective methods involve
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adjustment of on load transformer tap change, capacitor switch-
ing, active and reactive power rescheduling and load shedding.
While, the preventive control measures involve reactive power
planning or centralized voltage and reactive energy control
methods.

Large voltage stability margin could be obtained through
shunt connected reactive power support and hence granting in
higher system security. Various voltage stability analysis meth-
ods were explained in Ref. [2]. This reference organized those
methods into two important categories as static and dynamic
methods. It was proven that the load margin assessment is
important to measure closeness to voltage collapse [3]. Most
literature agreed that maximum loadability and VSM depend

https://doi.org/10.1016/j.icte.2018.04.007
2405-9595/ c⃝ 2018 The Korean Institute of Communications and Information Sciences (KICS). Publishing Services by Elsevier B.V. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.icte.2018.04.007&domain=pdf
http://www.elsevier.com/locate/icte
https://doi.org/10.1016/j.icte.2018.04.007
http://www.elsevier.com/locate/icte
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:erwani@utem.edu.my
mailto:titik.khawa@aeu.edu.my
mailto:zuhainaz@salam.uitm.edu.my
mailto:nifhanif@ymail.com
https://doi.org/10.1016/j.icte.2018.04.007
http://creativecommons.org/licenses/by-nc-nd/4.0/


82 E.E. Hassan et al. / ICT Express 4 (2018) 81–86

Fig. 1. Calculation of MLP.

on the solvability of load flow [4]. An approach called direct
interior algorithm was discussed in Ref. [5] for determining
maximum loadability of a power system. This algorithm is
much faster than the conventional simplex method and suitable
for enormous linear programming solution [6]. Subsequently,
the Continuation Power Flow (CPF) was developed and used
to identify load margin by calculating the solution path [7].
During dynamic analysis, a power system is represented by a set
of algebraic differential equations and time domain simulation
was performed [8]. Normally this technique needs extensive
computation schemes. Therefore, Quasi Steady State (QSS)
methods that integrated from static and dynamic approaches
were introduced largely to speed up the computation [9].
Generally, the studies on and the computation of load margin
are more concentrated on static voltage analysis as compared
to dynamic conditions since it required less computational time
with reliable solution [10]. Recently, the application of Arti-
ficial Intelligence (AI) techniques has been employed which

aimed for faster searching results during load margin estima-
tion [4,11]. Many research have been conducted in improving
the load margin to meet the growing in load demand. Many
published papers presented fuzzy set theory to determine the
optimal operating point [12]. The author from Ref. [13] has
introduced Genetic Algorithm (GA) to search for the active and
reactive power dispatch in multi-objectives Economic Dispatch
(ED) problem and utilized the fuzzy set theory decision making
methodology in determining the fitness of the strings which
represent the participating objectives. On the other hand, the
researcher in Ref. [14] has recommended to use of EA to find
the Pareto Optimal Solution. In this paper, the author has shown
that the multiple Pareto Optimal solution can be found in a sin-
gle run. The RPP optimization problem was finally solved using
an enhanced simulated annealing (SA) optimization technique.

This research introduced newly optimization methods
namely ATBFO and MOATBFO to solve the individual and
multi objective SCRPP problems respectively. In order to ver-
ify the best performance method thus two other optimization
methods called Meta-EP and original BFO were selected as
the comparison methods. The improvement on overall multi
objectives solution was found from MOATBFO hence declared
as the excellent optimization for SCRPP solution.

2. Methodology

2.1. Objective functions

In order to solve for SCRPP, two significant objective
functions were used such as load margin enhancement and real
power losses.

Fig. 2a. Flow chart of ATBFO for single objective SCRPP.
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2.1.1. Load Margin Maximization
During maximum loadability limit evaluation, the load was

increased until the occurrence voltage collapses that when the
system begins to lose its equilibrium. The maximum load
margin or Maximum Loadability Point (MLP) is determined by
an increment of load at 0.05 or 5% repeatedly from the overall
load. In the approach, minimum voltage, V min has been set at
0.85 V as the cutoff point for the voltage limit and the system
is assumed to operate in stress situation when reaching this
value. The flowchart as in Fig. 1 is presented the calculation
of objective function MLP.

2.1.2. Real Power Losses Minimization
The objective function for total loss minimization is given

by Eq. (1).

min fQ =

∑
k∈NG

PkLoss, (v, ϑ) =

∑
k∈NG
k=(i, j)

gk (V 2
i + V 2

j

− 2Vi V j cos ϑi j )
Vimin ≤ Vi ≤ Vimax i ∈ NB

QGimin ≤ QGi ≤ QGiMax i ∈ {NPV , ns}

(1)

where, Qi and Q j are reactive power at sending and receiving
buses respectively, QGi is generated reactive power of bus i,
Vi and V j are voltage magnitude at sending and receiving
buses respectively. PkLoss, is total active power loss over the
network, NB is load bus, NPV is voltage controlled bus and ns

is reference (slack) bus.

2.2. Weighted sum method

This study implemented both as single objective functions
and combining them as a multi-objective function using the
weighted sum approach as Eq. (2).

FT =

k∑
i=1

(αi × fmi ) (2)

where
∑k

i=1αi = 1 and fni =
max( fi )− fi

max( fi )−min( fi ) k is number
of objective function, αi is weighting factor for ith objective
function and fni is normalized value for ith objective function.

2.3. Adaptive tumbling bacterial foraging

The algorithm is motivated through the foraging activities
of the Escherichia coli (E. coli) bacteria introduced by K.M.
Passino. Several processes of E. coli foraging that are present
in our intestines are called chemotaxis, swarming, reproduction
and elimination and dispersal [15,16]. While, another pop-
ular numerical optimization solution namely Meta-Heuristic
Evolutionary Programming (Meta-EP) was reported capable in
obtaining the global optimum solution through the mutation
strength strategy. For that reason, using the E. coli foraging
strategy as in BFO, the global searching space is improved
by modifying the tumbling approach by adapting the muta-
tion technique applied in Meta-EP into tumbling expression
implemented in basic BFO thus represented by new equations
(3) to (5) in ATBFO algorithm. The important steps describe

Fig. 2b. Flow chart of ATBFO for multi objective SCRPP.

the process flow of Adaptive Tumbling Bacterial Foraging
Optimization (ATBFO) algorithm for single objective and multi
objective SCRPP as in Figs. 2a and 2b respectively.

θ i ( j + 1, k, l) = θ i ( j, k, l) + C(i)∅(i). (3)

Hence ∅(i) =
∆(i)√

∆T(i)∆(i)
, where ∆(i) = random vector for

each bacterium, ∆T (i)= transpose of random vector for each
bacterium. Then, mutate the new position of Jlast by using
given by Eq. (3).

∅
′i( j) = ∅ ( j) exp τ ′N (0, 1) + τ Ni (0, 1) (4)

P ′i ( j) = Pi ( j) + ∅
′i( j)N j (0, 1) (5)
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Table 1
Comparison between SOSCRPP1 and MOSCRPP at Point A′ when all load busses increased.

SOSCRPP and MOSCRPP using (RPD + TTCS + CP) technique

Objective function SOSCRPP1 MOSCRPP SOSCRPP1 MOSCRPP

Minimum
Voltage (P.U)

Minimum
Voltage (P.U)

Losses
(MW)

Losses
(MW)

Types of load increment

P load-unstressed 0.931 0.907 70.6513 70.3994
P load-stressed 0.935 0.917 66.4320 66.4184
Q load-unstressed 0.932 0.925 29.3769 29.1839
Q load-stressed 0.924 0.921 29.9849 29.0200
Q&P load-unstressed 0.925 0.911 48.2148 47.9662
Q&P load-stressed 0.939 0.911 46.4769 46.1958

Table 2
Comparison between MOTBFO and others optimization techniques for MOSCRPP using RPP technique—(RPD + TTCS + CP).

Optimization
techniques

Point B (Post-optimization) Point A′ (Post-optimization)

V min
(P.U)

Losses
(MW)

MLP
(%)

V min
(P.U)

V max
(P.U)

Losses
(MW)

MLP
(%)

P load-unstressed
MOATBFO 0.844 135.127 220 0.907 1.086 70.399 165
MOBFO 0.849 81.887 175 0.854 1.047 72.532 165
MOMeta-EP 0.845 122.524 210 0.896 1.053 71.393 165

P load-stressed
MOATBFO 0.851 132.656 190 0.917 1.093 66.418 140
MOBFO 0.852 57.172 125 0.851 1.062 69.586 140
MOMeta-EP 0.844 126.219 185 0.906 1.060 67.605 140

Q load-unstressed
MOATBFO 0.846 34.231 250 0.925 1.067 29.184 160
MOBFO 0.845 32.452 210 0.842 1.052 30.597 160
MOMeta-EP 0.842 33.552 230 0.912 1.055 29.983 160

Q load-stressed
MOATBFO 0.848 33.527 210 0.921 1.077 29.020 140
MOBFO 0.851 32.220 175 0.875 1.058 30.795 140
MOMeta-EP 0.849 34.367 200 0.904 1.055 30.481 140

Q&P load-unstressed
MOATBFO 0.842 84.551 175 0.911 1.097 47.966 135
MOBFO 0.844 70.319 160 0.883 1.064 49.084 135
MOMeta-EP 0.842 69.672 160 0.888 1.066 48.479 135

Q&P load-stressed
MOATBFO 0.839 82.702 150 0.911 1.068 46.196 115
MOBFO 1.067 67.229 135 0.869 1.043 47.987 115
MOMeta-EP 0.841 82.666 145 0.912 1.066 46.428 115

where τ =

√
1

√
2n

, τ ′
=

1
√

2n
, P ′i ( j) , Pi ( j) , ∅′i( j) and ∅ ( j)

is an ith component of respective vector, Ni (0, 1) is normally
distributed one dimensional random number with mean 0 and
1. N j (0, 1) indicates the random number will be new for each
value of j.

3. Result and discussion

3.1. Results for single and multi objective SCRPP

The simulations were tested under the IEEE 57 bus system
when all load busses increased that covered all possibilities of
load increments as following:

i. Reactive load increment or Q increment
ii. Real load increment or P increment and
iii. Reactive and Real load increments or Q and P load

increased simultaneously.
for all load busses increment at all respective points i.e. Point A,
Point A’ and Point B as in Fig. 3 during unstressed and stressed
conditions.

Fig. 3. The pre-SCRPP and post-SCRPP MLP.

Table 1 compares the results from SOSCRPP and MO-
SCRPP for all load busses increment. Although SOSCRPP
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Table 3
Comparison between MOATBFO and others optimization techniques for MOSCRPP using aggregate performance.

Aggregate function

Optimization
techniques

Point A′ Point B Total
aggregates

V min Losses MLP

P load-unstressed
MOATBFO 1.0 1.0 1.0 3.0
MOBFO 3.0 3.0 3.0 9.0
MOMeta-EP 2.0 2.0 2.0 6.0

P load-stressed
MOATBFO 1.0 1.0 1.0 3.0
MOBFO 3.0 3.0 3.0 9.0
MOMeta-EP 2.0 2.0 2.0 6.0

Q load-unstressed
MOATBFO 1.0 1.0 1.0 3.0
MOBFO 3.0 3.0 3.0 9.0
MOMeta-EP 2.0 2.0 2.0 6.0

Q load-stressed
MOATBFO 1.0 1.0 1.0 3.0
MOBFO 3.0 3.0 3.0 9.0
MOMeta-EP 2.0 2.0 2.0 6.0

Q&P load-unstressed
MOATBFO 1.0 1.0 1.0 3.0
MOBFO 3.0 3.0 3.0 9.0
MOMeta-EP 2.0 2.0 2.0 6.0

Q&P load-stressed
MOATBFO 2.0 1.0 1.0 4.0
MOBFO 3.0 3.0 3.0 9.0
MOMeta-EP 1.0 2.0 2.0 5.0

Table 4
Comparison between ATBFO and others optimization techniques for MO-
SCRPP for overall performance.

Optimization techniques MOATBFO MOBFO MOMetaEP

P load-unstressed 3.0 9.0 6.0
P load-stressed 3.0 9.0 6.0
Q load-unstressed 3.0 9.0 6.0
Q load-stressed 3.0 9.0 6.0
Q&P load-unstressed 3.0 9.0 6.0
Q&P load-stressed 4.0 9.0 5.0
Overall aggregates 37.0 104.0 75.0

resulted in better minimum voltage improvement as compared
to MOSCRPP, the considerations in determining the best
performance overall must take into account the total losses
minimization. Based on the lowest total losses, the solutions
from optimizing RPD+TTCS+CP via MOATBFO show the
best performance and hence are considered to be the best overall
since the difference in the minimum voltage is only small as
compared to that given by SOSCRPP.

Table 2 tabulates the results obtained from MOATBFO,
MOBFO and MOMeta-EP optimization techniques in solving
the MOSCRPP problems.

Further in Table 3, the performance of each optimization
technique is ranked and value 1 is given to the best result, while
value 3 is given to the worst. The least total aggregate indicates
the best performance overall.

Results in Table 3 show that MOATBFO always resulted in
the best overall performance. This conclusion is summarized in
Table 4. Therefore, the outstanding optimization computational
tool is recorded by the new MOATBFO, followed by MOMeta-
EP and finally the original MOBFO algorithm.

As a conclusion, the MOATBFO technique provided the
best results in solving multi-objective SCRPP problem or MO-
SCRPP.
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