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ABSTRACT   
 

The intention of the present study is to establish general framework for automated problem 

solving by approaching the task universal algebraically introducing knowledge as realizations of 

generalized free algebra based nets, graphs with gluing forms connecting in- and out-edges to 

nodes. Nets are caused to undergo transformations in conceptual level by type wise 

differentiated intervening net rewriting systems dispersing problems to abstract parts, matching 

being determined by substitution relations. Achieved sets of conceptual nets constitute congruent 

classes. New results are obtained within construction of problem solving systems where solution 

algorithms are derived parallel with other candidates applied to the same net classes. By 

applying parallel transducer paths consisting of net rewriting systems to net classes congruent 

quotient algebras are established and the manifested class rewriting comprises all solution 

candidates whenever produced nets are in anticipated languages liable to acceptance of net 

automata.  
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INTRODUCTION 

 

 
MOTIVATION 

 

 

In all fields of data processing, especially in robotics, physics and overall changing constructions 

is ever increasing need for knowledge of common structures in creating fast, exact, controllable 

and sufficiently comprehensive solving algorithms for problems. From René Descartes freely 

quoted: ”there is not very much in results or even in the proofs of them, but the method how they 

are invented, that is what is the process inventors use to realize proofs”. Restricting data flow to 

finite cases is often in descriptive models improper in order to get sufficient model to handle 

with the tasks, e.g. if variables are allowed to be systems themselves as in function 

representatives of quantum particles. Models in meteorology and models for handling with 

populations, biological organizations or even combinations in genetic codes call for common 

approach in problem solving especially in cases where in- or out- data flow volumes are 

beforehand impossible to predict to be limited in the already known sphere. For connections 

between neurons in brains, and in more theoretical aspects for allowance of simultaneous 

“loops”, nets are ideal as formal representations for iterations as e.g. within solutions for powers 

of higher order differential equations by Picard successive iterants. In robotics strong AI, the 

abstract mathematical reasoning model, will play the key element in handling data processes in 

artefacts. In the 1980s in Japan were the first concrete steps taken in robotics trying to imitate 

human actions; however imitating process is the endless effort to achieve inventiveness which 

lays its solid ground in the understanding of reasoning itself, thus strong AI is a more effective 

approach. Infinite ranks (the mightiness or cardinality of in- or out places in operation relations) 

are needed as tools for infinite simultaneous data flow into systems (operations) such as in 

quantum physics where infinite number of different state function solutions of a Schrödinger-

equation compounds a field to be operated. Naturally one can imagine numerous other fields 

where a mathematical framework for problem solving would be desirable. Within solving any 

problem an essential thing is to see over details, and one inevitably confronts the necessity of 

outlining or abstracting the object to be solved to already more familiar forms or to forms easier 

to be checked – keeping the number of links regarding the environment of the object in hands 

unchanged (e.g. to be the most comprehensive, the handled data flow would not be allowed to be 

restricted solely to beforehand computably predictable form).  

 

 

 

 

 

 

 

 

 

 

 

 



 3 

USED TOOLS 

 

The notion of net is introduced as the formal representative for comprehensive idea of 

information. In order to define comprehensive, mathematically sustaining definition for the 

conceptual problems we use pairs comprising problem objects and recognizers, where those 

object concerned  are nets, namely graphs (allowing loop structures) where vertices (nodes) are 

ranked letters glued by arity letters to each other at their arity places in the procedure: in to out 

and out to in. Recognizers can choose to be any netmorphism or even rewriting systems or 

transducers (graph-like formations the nodes replaced by rewriting systems). 

    To avoid beforehand unnecessarily restricting unpredictable data to include in problem objects 

we choose to use infinite formulation in object definition, that means allowing unlimited number 

of in- and output places to be occupied in nets. Hence the used exposure for objects comprises 

models for phenomena crucially vulnerable to unpredictable data flow. 

    Therefore we introduce three types of alphabets (sets of letters or signature) distinct from each 

other: frontier alphabet (the letters called variables), ranked alphabet (the letters called operators) 

and arity alphabet (of arity letters) divided in in-arity and out-arity alphabets, distinct from each 

other. The distinction for in- and out-arities is needed to divide the data flow direction in 

operations.  

    Realization (valuation) of nodes shifts the ranked letters (operators) to operations (relations: 

deterministic or undeterministic (with many valued) functions) which are operational in a 

desired algebra considering the practice at hand. In the special case of terms the operators can be 

regarded as free algebra operations. Realizations are defined so that the coming (in upstream) 

node operators are allowed to influence to the images of the node operations concerned. That is 

essential in loop structures. 

    Equations and decompositions are presented in the most general course for the purpose of 

closure properties in the realm of net classes, following systematically chosen way to dress 

information to suit to nets and accordingly to transducers. 

 

 

 

METHOD AND TARGET 

 

Various operations among nets are presented as well as rewriting systems, essential to 

comprehend used derivations. E.g. solving equation groups by the replacing method falls into 

partition structures. 

    The notion of inventiveness is probed: Comprehensive general exact solving method and its 

characteristic features especially in quotient systems obtained by partition or more generally by 

cover rewriting systems (a generalization for the idea of partition, consisting of the depth 

dimension of conceptual rewriting liable to allow left and right sides of rules intersect with each 

other) are targeted. We use parallel rewriting, commuting rectangles and iterations and in the 

cases of prerequisites related to limit demands, check results by quotient automata where the 

final states are sets of class elements. Systems have resemblances with confluence properties 

within classes and natural transformation between Functors demonstrating parallel algebras. 

    Rewriting systems will be classified type wise, comprising also the possibility to use the left 

and on the other hand distinctively the right substitutions. By right side substitution relations 

new links can be created from the applicable object to unoccupied in- or output places in the 

particular object itself. Hence we can in some cases avoid using infinite number of rewrite rules. 

Class characterizations are given to ease the burden of formatting abstract pairs. 
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OVERALL SUMMATION OF WORKING ORDER 

 

The present work is offering an explicit model for the representation of knowledge itself, not 

only implicit often seen in graph definitions and graph rewriting. Furthermore we deliver 

explicit syntax for automated problem solving.  

      The work is basing itself on a generalization and transformation to universal algebraic net 

configuration with new realization definition and renetting types on. First we present necessary 

preliminary definitions for the construction of nets the nodes of which have arbitrary number of 

in- and outputs. Realizations of nets are defined by transformations from operators to operations 

in algebras. Then we give the type wise representation for renetting systems and transducers, the 

node realizations of which being rewriting systems. The necessary consideration is given to 

definitions for generalized equations for closure properties in net class rewriting. The definition 

of problem and its solution is introduced in terms of nets, recognisability and transducers 

fulfilling limit demands. Then the partition of nets and the abstraction relation between concept 

nets are introduced yielding net classes, needed in searching the fitting partial solutions from 

memory.  

     “Altering macro renetting system”-theorem is introducing the necessary equation matching 

each step of the solution process between the substances of the nets in jungles. Parallel theorem 

establishes the invariability of the abstraction relation and also the construction for necessary 

algorithms for abstract sisters subject to net class rewriting algebra. The construction process of 

the desired transducer for the jungles in given problems to be solved is thus obtained from the 

known ones in iteratively updated memory. Finally we present the extension of the rules of 

solving transducers, in the cases where covers of mother nets in problems differ from partitions, 

where cover renetting systems are defined as generalizations of partition ones, and notion 

partition of jungle is replaced by concept of cover renetting result consisting of sequential parts 

of cover in depth dimension, partly replaced by each other.  
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1.§                                     Preliminaries 

 

This work follows the general custom of the discipline in concern and only neccessary symbol 

definitions are manifested, readers are encouraged to turn to the literature represented in the 

reference list for the more comprehensive guidance. 

 

 

1.1.                               Sets and Relations 

 

We agree that all defined terms are of the cursive style when represented first time. 

 

Definition 1.1.01.  We regularly use small letters for elements and capital letters for sets and 

when necessary bolded capital letters for families of sets. The new defined terms are underlined 

when represented the first time. 

 

Definition 1.1.02.  We use the following convenient symbols for arbitrary element a and set A in 

the meaning: 

a  A         “ a is an element of A or belongs to A or is in A ” 

a  A         “ a does not belong to A ” 

 a  A                      “ there is such an element a in A that ”  

l  a  A           “ there is exactly one element a in A ”  

∄ a  A     “ there exists none element a in A ” 

a  A          “ for each a belonging to A ” 

              “ then it follows that ” 

             “ if and only if ” , shortly “ iff ” 

 

Definition 1.1.03.  {a : *} or (a : *) means a conditional set, the set of all such a-elements which 

fulfil each condition in sample * of conditions, and nonconditional, if sample * does not contain 

any condition concerning a-elements. 

 



 6 

Definition 1.1.04.     means empty set, the set with no elements. A set of sets is called a family. 

For set I the notation {ai : i  I} is an indexed set (over I). Set {ai : i  I} is {a}, if ai = a 

whenever i  I. If there is no danger of confusion we identify a set of one element, singleton, with 

its element. It is noticeable that {} is a singleton set. 

 

Definition 1.1.05.   For arbitrary sets A and B we use the notations: 

A ⊆ B or  B ⊇ A   “ A is a subset of B (is a part of B or each element of A is in B) or B includes A ”  

A ⊈ B                                          “ A is not a part of B (or there is an element in A which is not in B)” 

A ⊂ B or B ⊃ A    “ A is a genuine subset of B ”  meaning “ A  B  and  ( b  B)  b  A ”  

A ⊄ B                    “ A is not a genuine subset of B ”  

A  B                        “ A is not the same as B “ 

A
c
  or  ¬ A             “ is the complement of A ”  meaning set {a : aA}     

A∪B                     “  the union of A and B ”  meaning set {a : aA or aB} 

A∩B                    “ the intersection of A and B ”  meaning set {a : aA , aB}. If A∩B =  , we  

     say that A and B are distinct with each other, or outside each other.  

A \ B                   “ A excluding B ” meaning {a : aA , aB}.  

 

Definition 1.1.06.  The cardinality of A, “the number” of the elements in set A, is denoted by |A|. 

 

Definition 1.1.07.    P(A) symbolizes the family of all subsets of set A. 

 

Definition 1.1.08.  The set of natural numbers {1,2,...} is denoted by symbol  lN , and lN0 = lN 

∪{0}. Maximum of  the numbers in subset A of  lN0  is denoted maxA. 

 

Definition 1.1.9.   Notice that for sets A1 and A2 and samples of conditions *1 and *2  

                               {a : aA1 , *1} ⊆ {a : aA2 , *2}  , 

if  (A1⊆A2  and  *1 = *2 ) or (A1 = A2  and  *2 ⊆ *1 ).   
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Definition 1.1.10.   The notation ∪(Ai : iI) is the union {a : (i  I) aAi} and 

                              ∩(Ai : iI) is the intersection  {a : (iI) aAi}. 

for indexed family {Ai : iI}. For any family B  we define: 

                         ∪B  = ∪( B : BB ) 

                              ∩B  = ∩( B : BB ). 

 

Definition 1.1.11.  Set ρ of ordered pairs (a,b) is a binary relation (shortly relation), where a is a ρ-

preimage of b and b is a ρ-image of a. The first element of pairs in relations is entitled preimages. 

Dom(ρ) = {a: (a,b)ρ} is the domain (set) of ρ (ρ is over Dom(ρ)), and I(ρ) = {b: (a,b)ρ} is its 

image (set). Instead of (a,b)ρ we often use the notation aρb. We also say that ρ is giving b from a. If 

the image set for each element of a domain set is a singleton, the concerning binary relation is 

called a mapping. For the relations the postfix notation is the basic presumption (b = aρ); 

exceptions are relations with some long expressions in domain set or if we want to point out 

domain elements, and especially for mappings we use prefix notations (b = ρa) or for the sake of 

clarity b = ρ(a), if needed. We define ρ:A↦B, when we want to indicate that A = Dom(ρ) and B 

⊇ I(ρ), and AρB, if (a,b)ρ whenever aA and bB. We also denote Aρ = {aρ:aA}. When 

defining mapping ρ, we can also use the notation  ρ:a↦b , aA and bB. If A ⊇ B, we say that 

ρ is a relation in A. When for ρ:A↦B we want to restrict Dom(ρ) to its subset C we denote ρ
|C

 , 

the restricted mapping of  ρ to C for which ρ
|C

 = ρ∩{(c,b): cC,bB}.  

     Set {b: aρb} is called the ρ-class of a. Let ρ:A↦B be a binary relation. We say that Aʹ(⊆A) is 

closed under ρ, if Aʹρ ⊆ Aʹ.  

     For each binary relations ,  and  we define (,) = {(a,b) : (a,b)}. 

 For set R of relations we denote aR = {ar: rR}, AR = {ar: aA, rR}. If ρ(A)  

(={ρ(a): aA}) is B, we call ρ a surjection. If [ρ(x) = ρ(y) ⇔ x = y ], we call ρ injection. If ρ is 

surjection and injection, we say that it is bijection. If ρ(x) = x whenever xDom(ρ), we say that ρ 

is an identity mapping (denoted Id). The element which is an object for the application of a 

relation is called an applicant. 
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For relations ρ and σ and set R of relations we define:  

the catenation  ρσ = {(a,c): b(Dom(σ)∩I(ρ)) (a,b)ρ, (b,c)σ}, 

the inverse ρ
-1

 = {(b,a): (a,b)ρ}, 

R
-1

 = {ρ
-1
: ρR}.  

Let θ be a binary relation in set A. We say that  

θ is reflexive, if  (aA) (a,a)θ, 

θ is inversive, if  θ
-1⊆θ, 

θ is transitive, if  θθ⊆θ, 

θ is associative, if  (aθb)θc = aθ(bθc), 

θ is an equivalence relation, if it is reflexive, inversive and transitive. If we want to 

emphasize the domain, say A, where θ is relation, we denote θ  Eq(A). 

For sets A and B we define 

|A| = |B| , if there is such injection α that α(A)=B , 

|A| < |B| , if there is such injection α that α(A)⊂B , 

|A| ≤ |B| , if |A| = |B| or |A| < |B|. 

Set A is denumerable, if it is finite or there exists a bijection: lN ↦ A; otherwise it is undenumerable. 

 

Definition 1.1.12.  CARTESIAN POWER. Let I be a set of index elements and let {Ai: iI} be 

an I-indexed family (an index element (shortly index) is incorporated in each element), and let B be 

the set of all the bijections joining each set in the indexed family to exactly one element in that 

set and indexing that element (an indexed element ) with the index element of that set it includes to. 

For any element a in Ai we denote index(a) = i, and on the other hand for each iI,  

elem(i,{Ai: iI}) = Ai. Family {{r  (Ai) : iI}: r  B} (a set of sets consisting indexed elements) 

is called |I |-Cartesian power of indexed family {Ai: iI} and we reserve the notation ∏(Ai  : iI) 

for it, and the elements of it are called |I |-Cartesian elements on {Ai : iI}. The cardinality of I, |I|, 

is called the Cartesian number of the elements of |I |-Cartesian power. If A = Ai for each iI, we 

denote A
|I

  

|
 for |I |-Cartesian power of set A, the elements called |I |-Cartesian elements of A. In the 

case index set I is lN, we denote (a1,a2,…) as the element of |lN |-Cartesian power of indexed 
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family A = {Ai: ilN}, whenever a1A1, a2A2,… . Any relation from I-Cartesian power to a 

set is called a |I |-ary relation. For the number of Cartesian element a   we reserve the notation N(a ).  

For finite cases: nlN and sets A1,A2,…,An we define n-Cartesian power  

               A1×A2×…×An = {(a1,a2,…,an): a1 A1, a2 A2, …, an An}, 

and call (a1,a2,…,an) an n-tuple. If I is finite, we can write n-tuple (a1,a2,…,an), where |I | = n, 

instead of {ai: iI} and call that tuple the tuple form of the |I |-Cartesian element. If n = 0, n-

Cartesian power is . Let K be a set of index elements and let {Ik : kK} be a family of index 

sets. We denote (∏(Ai: iIk) :  kK ) = {{r  (Ai) : iIk , kK}: r  B}. For finite K we can write 

∏(Ai : iI1) ∏(Ai : iI2)  ... ∏(Ai : iI |K |) instead of (∏(Ai : iIk) :  kK ). 

For arbitrary Cartesian element s = {ai : iI} we agree on the undressed notation of s : (s) = (ai | iI) 

instead of notation ({ai : iI}), and in finite case (s) = (a1, a2, ... , an) instead of ((a1, a2, ... , an)). 

For elements (ai | iI) and (bj | jJ)  (ai | iI) = (bi | iI), iff I = J and for each (iI) ai = bi . 

We say that relations between two Cartesian powers of indexed families with the same Cartesian 

number preserve the indexes, if in those relations each projection of each preimage and the same 

projection of its image have the same index. 

 

Definition 1.1.13.   PROJECTION.  Let I and J be two arbitrary sets. We call mapping  

e[I]: (I,∏(Ai: iI))↦∪(∏(Ai: iI)) a projection mapping (reserving that notation for it), where 

(jI) projection element e[I](j,a  ) (shortly denoted a j ) is the element indexed with j in a   (belonging 

to Aj). We denote simply e, if there is no danger of confusion. We say that a Cartesian element is 

≤ another Cartesian element, if and only if each projection element of the former is in the set of 

the projection elements of the latter and the Cartesian number of the former is less than of the 

latter.     

 

Definition 1.1.14.  CATENATION.  Let (Ai: iI) be an indexed set. If each projection element in a 

|I |-Cartesian element of ∏(Ai: iI) is written before or after another we will get an |I  |-catenation 

of family (Ai: iI) or a catenation over I, and the projections of the concerning Cartesian element 

are called members of the catenation. We denote the set of all I-catenations of family (Ai: iI) by 

Cat(Ai: iI). An associative mapping: ∏(Ai: iI) ↦ Cat(Ai: iI) joining an I-catenation to each 
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I-Cartesian element of ∏(Ai: iI) is called a catenation mapping. Notice that also pq is a catenation, 

if p and q are catenations, and we say that each member of p precedes the members of q and each 

member of q succeeds the members of p; thus preceding and succeeding defining catenation order 

among the members of catenations. If we have a set A such that for each iI  Ai = A, we speak 

of an |I  |-catenation of A and denote the set of all the |I  |-catenations of A by A
|I |. E.g. sequence 

a1a2…an , nlN , n > 1, is a finite catenation. For set H we define H
*
 (the catenation closure of H) such 

that H
*
 = ∪( H 

|K |
 : K⊆I ). Any catenation of members of catenation c is called a partial catenation of c. 

Such catenation d which are a catenation of partial catenations of catenation c and d = c is called a 

decomposition of c. For our example, above, d1d2 , where d1 = a1a2…ai , d2 = ai+1ai+2…an , is a 

decomposition of a1a2…an. Catenation operation  between sets is defined: 

AB = {ab: aA, bB}. 

If the members of a catenation closure are relations we speak of a transitive closure of the set of 

those relations. For set A, index set I and set R of relations we define: 

AR
I
 = (ARi)R

J
 , whenever iI, J = I\i  and  Ri = R . 

  

Definition 1.1.15. For any symbols x and y we define replacement x←y, which means that x is 

replaced with substitute y. Notation A(x←y | C) represents an object where each x occurring in A 

is replaced with y with condition C; and A(x←) is an object where x is deleted.  

 

 

 

 

1.2. §                                    Abstract Data types  

 

1.2.1                  

 

Definition 1.2.1.1.  ALPHABETS. Let us introduce three types of alphabets (sets of letters) 

distinct from each other: frontier alphabet (the letters called variables, often referred “terminal”), 

ranked alphabet (the letters called operators, “nonterminals”) Rozenberg G, Salomaa A, ed. (1997) 

and arity alphabet (of arity letters) divided in in-arity and out-arity alphabets, distinct from each other. 
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The distinction for in- and out-arities is needed in dividing the data flow direction in operations. 

If there is no danger of confusion symbols X and Y are reserved for frontier alphabets, symbols 

 and  are reserved for ranked alphabets and Ξ for the union of in-arity alphabet Ξin and out-

arity alphabet Ξout. The ranked and frontier letters are called node letters , shortly nodes, if there is 

no danger of confusion, and sometimes for frontier letters synonyms leaves are used. Infinite 

ranks are needed as tools for infinite simultaneous data flow into systems (operations) such as in 

quantum physics where infinite number of different state function solutions of a Schrödinger-

equation compounds a field to be operated.  

 

Definition 1.2.1.2.  OPERATORS. Let r be a mapping from the union of ranked, frontier and 

arity alphabets to the set of the ordinals assigning to each letter  two ordinals, so called ranks, an 

in-rank (in-rank()) and an out-rank (out-rank()).  

     We denote   α, = {σ : in-rank(σ) = α , out-rank(σ) = } to symbolize the set of all (,)-

ary operators  in . In the special case where the in-rank of an operator of  is 0 and out-rank = 1, 

is called ground letter. The in-ranks and out-ranks of frontier letters are 1, and the in-ranks and out-

ranks of arity letters are 0. In the following the letters and the operators of them are equated with 

each other, if there is no danger of confusion. Cf. “signatures” (Rozenberg G, Salomaa A, ed. 

(1997); Nivat M, Reynolds JC, ed. (1985); Ohlebusch E (2002)). 

  

 

1.2.2               Nets 

 

1.2.2.1        BASIC DEFINITIONS            

 

Nets describe directed graphs, cf. model theoretical aspects in consideration of formal descriptive approach for 

graphs Thomas W (1997), needed e.g. in computer algorithms and describing connections 

between neurons in brains, and in more theoretical aspects allowing simultaneous “loops” nets 

are ideal as formal representations for iterations as e.g. within solutions for powers of higher 

order differential equations by Picard successive iterants Tirri S, Aurela AM (1989). Without 

net-formation (differing considerably from trees (Ohlebusch E (2002); Denecke K, Wismat SL 

(2002)) with only one out-arity) there is no way in a tree to get a return data from any realization 



 12 

of the ranked letter looped to the tree. It is also impossible to cut connection between two parts 

of one net leaving only subnet and deleting the other part. Also it is impossible to handle 

simultaneous changes in out-arity connections and furthermore infinite number of out-arities on 

the whole. Nets allow simultaneous algebraic structures in languages to be recognized by net 

rewriting automata as would happen in adding the number of saturating term algebra congruence 

relations by replacing terms with nets and homomorphism relations in tree automata by rewriting 

systems in Tirri S (1990). Furthermore the results in operation-level in realizations of nets are 

allowing dependences on coming up streams in carrying nets. By the semantic point of view in 

process algebra here described nets are concentrating to get in- and output places (filled with 

arity letters) to ranked letters cf. tokens (Best E, Devillers R, Koutny M (2001); Baeten JCM, 

Basten T (2001)). Some of the preliminary ideas of nets though deviating from knowledge 

representation, consequently in results, proofs and generalizations are in Tirri SI (2009). 

 

Definition 1.2.2.1.1.  NETS. 

We define XΞ-net inductively as follows: Each letter in 0∪X∪Ξ is a XΞ-net. The letters 

with in-rank 0 are called ground nets.  

t = ( r  (i
 

) ; r  (j
 

) |  iI, jJ )  

is a XΞ-basic net, the set of its letters L(t) = {}∪( ∪(L(r  (k
 

)): kI∪J), whenever  

 (i)   , and I and J are such index sets distinct from each other that |I | = in-rank()  

       and |J | = out-rank(), and {i
 

 : iI}⊆Ξin , {j
 

 : jJ}⊆Ξout ,  

       for each (m,nI∪J) m
 

 = n 
 

,  iff  m = n, and 

(ii)  Io⊆I, Jo⊆J, and I´⊆I\Io, J´⊆J\Jo, 

(iii) for each (kI∪J) k and Ik and Jk are such index sets distinct from each other and 

       from I and J  that |Ik | = in-rank(k) and |Jk | = out-rank(k), and {m
 

: mIk}⊆Ξin , 

           {n
 

: nJk}⊆Ξout  are such sets of arities that for each (m,nIk∪Jk) m
 

 = n 
 

,  iff  m = n, and 

(iv)  r  is such a mapping that  

       (1.) for each (kI´∪J´)   

                   r  (k
 

) = k
 
 

 ,  
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                   L(r  (k
 

)) = k
 
 

 , 

                   where k
 
 

  Ξ, and 

       (2.) for each (kIo∪Jo)   

                   r  (k
 

) = k
 
 

k ,  

                   L(r  (k
 

)) = {k
 
 

, k}, 

                   where k  X∪0, and 

            (3.) for each (iI\(Io∪I´)) (l  n
1 i 

Ji)  n1 i 
 Ξout  and 

                   r  (i
 

) = i
 

n1 i 

i(m ; n | mIi, nJi),  

                   L(r  (i
 

)) = {i
 

}∪L(i(m ; n | mIi, nJi)), 

                   where L(i(m ; n | mIi, nJi)) = {i}∪{m ,n : mIi, nJi}, 

                   {m : mIi}⊆ Ξin∪X∪0, {n : nJi}⊆ Ξout∪X∪0, and 

            (4.) for each (jJ\(Jo∪J´))  (l  m
0 j 

Ij)  m
0 j
  Ξin  and 

                   r  (j
 

) = j
 

m
0 j 

j(m 
 

,n | mIj, nJj),  

                   L(r  (j
 

)) = {j
 

}∪L(j(m ; n | mIj, nJj)), 

                   where L(j(m ; n | mIj, nJj)) = {j}∪{m ,n : mIj, nJj}, 

                   {m : mIj}⊆ Ξin∪X∪0, {n : nJj}⊆ Ξout∪X∪0. 

     We say that for each (kI) r  (k
 

) occupies arity k
 

 of (i 
 

; j | iI, jJ), where  

{i,j: iI , jJ} ⊆ Ξ∪X∪0, if k
 

L((i 
 

; j | iI, jJ)) and r  (k)X∪0. Furthermore we 

say that for each (iI\(Io∪I´)) out-arity n1 i
 of i(m ; n | mIi, nJi) and in-arity i

 

 of  

(i
 

 ,r  (h
 

) ; r  (k
 

) |  hI, h≠i, kJ) occupy each other in t, and for each (jJ\(Jo∪J´)) out-arity j
 

 of 

(r  (h
 

) ; j
 

 , r  (k
 

) |  hI, kJ, k≠j) and in-arity m0 j
 of j( m

 j 
, n

 j
 | mjIj , njJj) occupy each 

other in t. Furthermore using definitions for symbols defined above for t we define: 

     s = ( r  (p
 

), i
 

n
 i 

si ; r  (q
 

), j
 

m
 j 

tj |  pIo∪I´, qJo∪J´, iI\(Io∪I´), jJ\(Jo∪J´))  

is a net, and 

L(s) = {,i,j
 

 : iI, jJ}∪(  ∪(L(r  (k
 

)) : kIo∪I´∪Jo∪J )́)∪(  ∪(L(si) : iI\(Io∪I )́))∪(  ∪(L(tj) : jJ\(Jo∪J )́)) 
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is the set of the letters in s, 

whenever for each (iI\(Io∪I´) , jJ\(Jo∪J´))   

    (1.) si and tj are nets outside Ξ∪X∪0, and 

    (2.) {n
 

: nIi´´}⊆Ξout  and {m
 

: mJj´´}⊆Ξin  are such sets of arities that  

           for each (m,nIi´´∪Jj´´) m
 

 = n 
 

,  iff  m = n, and  

    (3.) there is exactly one such index niIi´´ that n
 i
 is an unoccupied out-arity letter in si , and  

           there is exactly one such index mjJj´´ that m
 j
 is an unoccupied in-arity letter in tj.  

We call  the root of s, root(s). Net (i ;j
 

 | iI, jJ) is called the ranked net. 

For each net u we define and reserve for that purpose such rank index sets I, J , L(u)∩(\0), 

distinct from each other that |I | = in-rank() and |J | = out-rank() and the in-rank index set of net 

u Iu = ∪( I : L(q)∩(\0))  and the out-rank index set of net u  Ju = ∪( J : L(q)∩(\0)). 

Uno(u) is a notation for the set of the unoccupied arity letters of u and Occ(u) is reserved for the 

set of all occupied arity letters of u. Occ(A,t) means the set of all those elements in set A, which 

are occupied in net t, and Uno(A,t) are reserved for the set of all those which are unoccupied in 

net t. The index elements in the in-rank index set of net u for unoccupied arities in u are called 

unoccupied in-arity index elements, and the index elements in the out-rank index set of net u for 

unoccupied arities in u are called unoccupied out-arity index elements. The set of all unoccupied in-arity 

index elements is denoted Iu
UN, and the set of all unoccupied out-arity index elements is denoted 

Ju
UN. Symbols Iu

OC and Ju
OC are reserved for the sets of occupied elements, respectively. 

The set of all XΞ-nets is denoted F(X,Ξ). We also denote FΞ(X) = F(X,Ξ)\Ξ,  

FX
(Ξ) = F(X,Ξ)\X and FXΞ = F(X,Ξ)\(X∪Ξ) and FX0Ξ

 = F(X,Ξ)\(X∪0∪Ξ).  

 

Definition 1.2.2.1.2.  TIES and SUBNET. 

Now when we have reached the definition and the sense of unoccupied arities we are ready to 

give a formulation for nets in accordance with previous given, more convenient later when we 

are handling substitutions and rewriting. First we introduce tied sets of tied terms (in tied and out tied) 

(of nets) 

F
     

in(X,Ξ) = Ξin∪{ : Ξin,X∪0}∪{12u : 1Ξin, 2Ξout , 2Uno(u), uFX0Ξ
 } and 
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F
     

out(X,Ξ)  = Ξout∪{ : Ξout,X∪0}∪{12u : 1Ξout, 2Ξin , 2Uno(u), uFX0Ξ
 }. 

We denote  F
     

(X,Ξ) = F
     

in(X,Ξ) ∪ F
     

out(X,Ξ).  

The first set and its elements in the union F
     

in(X,Ξ) and F
     

out(X,Ξ) respectively are called 0-tied 

and the second set and the elements in it are 1-tied , and finally the third set and its elements are 

2-tied. For each tied element s we denote its k
th
 member s

(k)
, k = 1,2,3. The last member of any 

tied term is called tied net denoted for tied term s by sL, and the preceding members of the tied net 

are tie-arities of sL , the last arity is a genuine tie-arity of sL. For 2-tied term s pair (s
(1)

,s
(2)

) is a 2-tie of 

sL ; an in-2-tie, if sF
    

in(X,Ξ), and an out-2-tie, respectively, if sF
   

out(X,Ξ). For 1-tied term its first 

member is the 1-tie of its last member. 0-tied term is its 0-tie itself. For 2-tied term s, s
(1)

 is the 1-

tie (in-1-tie, if s
(1)

 is an in-arity and out-1-tie, if s
(1)

 is an out-arity) of sL.We use names in-tied and 

in-ties and out-tied and out-ties respectively depending on which one of sets F
     

in(X,Ξ) and 

F
     

out(X,Ξ) those tied elements belong. The set of the in-k-tied and out-k-tied elements (k = 0,1,2) 

are denoted F
     

in(X,Ξ)
(k)

 and F
     

out(X,Ξ)
(k)

 respectively, and the union of those sets by  F
     

(X,Ξ)
(k)

. 

The set of the in-ties in net s is denoted IT(s), and OT(s) for the out-ties, respectively.     

     For any net s (X∪Ξ) s  is named as an in-gluing form of s , where Ξin∩L(s), and if 

Ξout∩L(s), s is entitled an out-gluing form of s. The set of all in-gluing forms of s is the in-gluing 

form of s , denoted sing and  the set of all out-gluing forms of s is the out-gluing form of s , denoted soutg. 

The union sglue = sing∪soutg is called the gluing form of s, and s is denoted sglueL . The gluing form of 

each letter in X∪0 is the letter itself. The arities have no ranks and therefore either no gluing 

forms. We define 

F
   

outg(X,Ξ) = {sLglue:sF
   

out(X,Ξ)}, 

F
    

ing(X,Ξ) = {sLglue:sF
   

in(X,Ξ)} and 

F
     

g(X,Ξ) = F
     

ing(X,Ξ) ∪ F
     

outg(X,Ξ).  
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For each sF
   

(X,Ξ)} we denote NG(s) = {sL,sLglue}. The set of all in-ties in net t is denoted IT(t), 

and OT(t) for the out-ties, respectively. In-ties and out-ties correspond in-coming and 

respectively out-coming labeled edges and node letters correspond labeled nodes Engelfriet J 

(1997). 

 

We define for each s{}∪FXΞ 

      t = s(i ; j | iIs
UN, jJs

UN, C) 

is a net, where for each (iIs
UN, jJs

UN)  iF
    

in(X,Ξ), jF
   

out(X,Ξ), i is replacing in-arity  

letter 
i
 in s and j is replacing out-arity letter j in s, and i

(1) 
= 

i
 , j

(1)
 = j , and C is a sample 

of conditions to be fulfilled (normally assumed to be known) or equivalently 

      s( ; | C)  

is a net, whenever F
  

in(X,Ξ)
|Is

UN| 
, and F

   

out(X,Ξ)
|Js

UN| 
, where the first members in each 

projection elements of  and  are in Uno(s). Nets iL , iIs
UN, are called down-subnets of  t, 

respectively jL , jJs
UN, are called up-subnets of  t, and for each (qsub(t)) sub(q)⊆sub(t), where 

the set of all subnets of net t is denoted sub(t). Cartesian elements, the projections being nets are 

Cartesian nets. Nets where the out-ranks of the nodes are 1, are trees, and trees where the in-ranks 

of the nodes are 1 are chains. We call sets of trees forests. A set of nets is called jungle, and for 

jungle T we agree about sub(T) = ∪(sub(t):tT). What is said for nets is in the following 

generalized for jungles as relations from elements to sets of elements and is denoted 

respectively. E.g. for jungle T we denote sub(T) = ∪(sub(t):tT) and L(T) = {L(t): tT}. We say 

that a net is finite, if the cardinalities of the frontier and ranked letters in the net are finite. 

 

Trees can have only nodes with one out-tie at most. The main difference between nets and trees 

can be demonstrated with the following net containing downstream subnet s incorporating a 

node with more than one out-tie:  

     q( si ;j | iIq
UN, jJq

UN , (i) siL = s, |p(t,s)| = 1, |{ si : i }| > 1 ), 

where ⊆ Iq
UN, p(t,s) is defined later in 1.2.2.1.4,  

 



 17 

Definition 1.2.2.1.3.   LINKS and NET CLASSES.  

Subnets of nets being frontier letters are called leaves of the net, and the set of all leaves in v is 

denoted by Leav(v). For net v we denote fron(v) as the set of the frontier letters of v, and rank(v) 

is the set of all ranked letters in v. 

     For t = s(i ; j | iIs
UN, jJs

UN, C) net iL  is said to be (next)out-linked to s by out-tie of iL  , 

called out-(arity) linkage  of iL  , respectively s is said to be (next)in-linked to iL  by in-tie of s , called 

in-(arity) linkage of s. An in- and out-linkage of the same node are said to be successive to each other. The 

linkages between the same two nodes are parallel with each other. If net u is out-/in-linked to net q 

and q is linked to net v, we say that u is (successively) out-/in-linked to v. The nets which are not 

linked to each other are disjoined with each other.  

     A linkage (comprising of consecutive in- and out-arity linkages) which connects two nodes in 

a net is an inward linkage connection of the net; the linkages which are not inward connections are 

outward linkage connections. If a net has no outward linkage connections, it is said to be closed. 

     Net t = (i ; j | iIσ, jJσ, C) is called -root revealing net , where . Linkages in nets can 

also be defined by using wider parts of nets: for each iI triple (,root(iL),i
(1)

 i
(2)

) constitutes 

node linkage of t, and (root(iL),,i
(2)
i

(1)
) is its inverse; respectively for each jJ  

(,root(jL),j
(1)
j

(2)
) is node linkage of t, and (root(jL),,j

(2)
j

(1)
) is its inverse. The set of the node 

linkages of t we denote NL(t) and we use notation NL
−1

(t) for the set of the inverses of elements 

in NL(t). Because inverses exist in the up-subnets of root revealing nets, it is natural that 

“writing directions” of the letters in linkages in nets should not determine those nets. Therefore 

we will give a sensible definition for the identity of nets: 

For nets p and q we define p = q, if (sNL(p)) sNL(q)∪NL
−1

(q)  and  (sNL(q)) 

sNL(p)∪NL
−1

(p). Actually each net defines a class of nets equal with it and for net t we denote that 

set with [t], its elements entitled t-class representatives. If there is no danger of confusion, we 

suppose the appropriate representative to be given.  

 

Definition 1.2.2.1.4.   POSITION.  Next we define locations, positions, of nets in nets using arity 

letters. Let q = (si;tj | iIUN, jJUN) be a net. We say that the out-tie of net siL in q is a position of 

siL in q and si
(1)

 is the position of siLoutg  in q, the sets of the described positions are denoted p(q,siL) 

(⊆IT(siL)), p(q,siLoutg)(⊆ Ξout∩L(siLoutg)), respectively, and siL and siLoutg are next  below q or next 
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down positioned in q, iIUN, and an in-tie of tjL in q is a position of tjL in q and tj
(1)

 is the position of 

tjLoutg  in q, the corresponding sets denoted p(q,tjL) and p(q,tjLoutg), and next above q or next up 

positioned in q, jJUN. Furthermore generally for arbitrary nets u and v we define inductively 

positions as catenations p(u,v) = p(u,s)p(s,v) and p(u,r) = p(u,s)p(s,r), whenever ssub(u), rvglue 

and vsub(s), next positioned in s. We also say that v and r are positioned in u. If c is next above h 

and h is next above u, we define that c is above u. Below is defined analogously. The same 

terminology is a practice also for the positions of the corresponding nets. Next below/next above 

is denoted shortly by ≼/≽ , and below/above is denoted by ≺ / ≻ . Let P1 and P2 be two 

arbitrary sets of positions. We define and denote that P1≼P2 , if  P1 and P2 are distinct with each 

other and  p1P1   p2  P2 such that    p1≼p2 , and P1≺P2 , if  p1P1  p1≺p2 whenever p2P2 .   

     The set of all positioned elements in t is denoted p(t). For sets  T and S of nets or gluing 

forms we denote  p(T,S) = ∪(p(t,s) : tT, s  S), and p(T) = ∪(p(t):tT). Furthermore due to the 

importance of the unoccupied character in nets we take for use notation Unop(t) for the set of the 

positions of the unoccupied arities in t, and generalize the notation as usual for jungle, say T, 

Unop(T) = ∪(Unop(t):tT). Furthermore for jungle T we denote the cardinality of Unop(T) by 

δD(T). Cf. “marked letters” Ohlebusch E (2002).  

     For net v, v|p (an occurrence), is denoted to be the subnet of v having or “topped at” position p 

in v. A down-/up-frontier net of net v, down-/up-fronnet(v), is such a subnet of v, whose occurrence 

is next below/next above v (at so called down-/up-frontier position of v). We denote Frd(v) meaning 

the set of all down-frontier nets of v, and Fru(v) is the set of all up-frontier nets of v, and Fr(v) 

means the set of all frontier nets of v. 

     We define the height of  net  t, hg(t), by the following induction: 

1°   hg(t) = 0, if  tΞ∪X∪0   

2°   hg(t) = 1+max{hg(s): sFr(t)}, if tF(X,Ξ)\(Ξ∪X∪0).  

     For arbitrary net t, there is in force equation |  [t] | = |{p(t,) : L(t)∩}|. 

     Notice that for any net t and its subnet s outside X∪0, the positions of s and its gluing form 

in t are different and that the position of s is unequivocal, but its gluing form can be rearrange in 

many ways to the context of t next to it (thus forming new nets), depending on which arities of 
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the gluing form is chosen to occupy arities of the context. Trees (owing only one out-arity) have 

naturally no such difference between the positions of nets and the gluing form of them. We will 

come to this matter of rearrangement more profoundly later in the chapter of rewriting.  

 

Definition 1.2.2.1.5.  ENCLOSEMENTS.  Let t = s(i ; j | iIs
UN, jJs

UN) be a net. We call out-

gluing forms iLoutg , iIs
UN, s-downstream elements of t for s (s being the upcontext of t for those elements, or 

for the set of them) and in-gluing forms jLing , jJs
UN, s-upstream elements of t for s (s being the down 

context of t for those elements). If we want to emphasize that net v is the context of net u only for the 

frontier letters in u, we say that v is the apex of u, apex(u), for those letters; accordingly down and 

up apex , respectively. We agree of notation apex(T) = {apex(t): tT}, whenever T is a jungle. 

     Net s can also be expressed with notation conP(t), where  

     P = { p(t,iLoutg), p(t,j Ling) : iIs
UN, jJs

UN}.  

Notice that context conP(t) is the apex of t, if P = {p(t,x) : xX∩L(s)}. 

     The sets of the ties of iL and jL to s, iIs
UN, jJs

UN, are matching arity linkage sets of s to t and the 

family of all of them is denoted MAL(t,s). We also call s the abover of iL in t, denoted  

t \b { iL: iIs
UN}, and each iL, iIs

UN is a belower of s in t, the set of the belowers of context s in t is 

denoted t \a  s. 

     We say that net s is linked outside to net t , if s is linked to t and the set of the arity linkages of s  

to t differs from set MAL(t,s).  

 

     If u is a subnet of net v, we say that v can be divided in two nets : u and the abover of u in v. 

The contexts of the subnets of t are the enclosements of t (we say they are in t or t is embedding 

them), and the set of all enclosements of t is denoted enc(t). For jungle T we denote  

enc(T) = ∪(enc(t) : tT). We say that a net is finite, if the cardinalities of the frontier and ranked 

letters in the net are finite. The elements in enc(t)\t are entitled genuine enclosements of t and the set 

of them is denoted encg(t); for jungle T we have encg(T) = ∪(encg(t) : tT).  

     For further need it is worth to notice that because for any net t NL(t) = ∪(NL(s) : senc(t)), 

we can write [enc(t)] = enc([t]). 
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Definition 1.2.2.1.6.  OVERLAPPING and OMISSION. 

Let p and q be arbitrary nets. If there is such net t, each enclosement of which is in both [p] and 

[q] and has a linkage connection to each other, we say that p and q overlap each other, and t is said to 

be shared among p and q. If E
pq

 is the denotation for the set of all shared nets among p and q, the 

overlapping net of p and q denoted p⋓q is such a net in E
pq

 (the most “extensive”) that (kE
pq

) 

kenc([p⋓q]). For jungles P and Q we define P⋓Q is such a net in E
pq

 (= ∩(E
pq

 : pP, qQ)) that 

kenc([p⋓q]) whenever kE
pq

 , and ⋓Q = Q⋓Q.  Nets are said to be distinctive from each other, if they do 

not overlap each other. A jungle is distinctive if all of its nets are distinctive from each other, and 

furthermore a relation over a distinctive jungle domain is entitled  a distinctive relation. 

 

For an arbitrary nets s and t the set of the positions of the outside arities of  t in s, (Unop(t,s)), means the 

set of the positions of all those arities of the elements in L(t⋓s) which are not occupied by 

anything in net s. 

     Let s and t be two arbitrary nets. Let s
o
 be the context of such a representative of [s] that the 

context is for the gluing form of a representative of [s⋓t], and respectively let t
o
 be the context of 

such a representative of [t] that the context is for the gluing form of a representative of [s⋓t]. Jungle 

{s
o
,t

o
} is called the omission of s by t  or  s omitted by t, denoted s ʅ t . Notice that an omission may be 

broken (cf. “broken jungle” defined later). For arbitrary net s and jungle S we denote  

s ʅ T = ∩(s ʅ t : tT) and for jungles S and T we use notation S-T = {s ʅ T : sS}.  

 

Net, say k, possessing nets s and t as subnets and for which k ʅ t = s ʅ t and  k ʅ s = t ʅ s  is  the  

assimilation of  s and t and we denote s⋒ t. 
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1.2.2.2       Characters of Nets 

 

Here we represent some features typical to nets and the relations between them. 

 

Definition 1.2.2.2.1.  NEIGHBOURING, ISOLATION and BORDER. 

If nets do not overlap each other, but are linked to each other, we say they are neighbouring each 

other. A set of the neighbouring nets of a net is called a touching surrounding of the net. Nets are said 

to be isolated from each other, if there is a net neighboured by them. We say that nets being 

neighboured by each other are linked directly, and nets being isolated from each other are linked via 

isolation.  

     If nets are neighbouring each other such that they are not isolated from each other, we say 

they are closely neighbouring each other. 

     If nets are isolated from each other, but are not neighbouring each other, we say they are 

totally isolated from each other.  

     Net s is t-isolated, if the nodes of t are totally isolated from each other by the nodes of s, and 

inversely. 

     The set of the linkages connecting two nets to each other is called the border between those 

nets. The border may be empty, too. The union of the set of the borders between a net and all 

other neighbouring nets is called simply the border of the net.  

 

Definition 1.2.2.2.2.  THE RIM and BROKEN JUNGLE.  

The nets of a jungle which are in-linked inside the jungle, but not out-linked, are out-end nets and 

at out-end positions in the jungle, and the nets out-linked inside a jungle, but not in-linked, are in-end 

nets and at in-end positions in the jungle. The union of the in-end nets and the out-end nets in a 

jungle is the rim of the jungle. 

     We call a jungle broken, if each of its nets is disjoined from each other; otherwise it is 

unbroken. Notice that unbroken jungles are actually nets. Broken jungles, each net having only 

one letter outside the arity alphabet, are totally broken. E.g. any set, the elements of which are 

nodes, can be seen as a totally broken jungle and is called degenerated. Because of the close 

relationship between nets and jungles we often denote jungle by small letter instead of the 
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normal procedure for sets. Comparative study in the form of dependence can be found in Diekert V, 

Métivier Y (1997). 

     Notice that even if a net itself is unbroken, an enclosement of it may be a broken jungle.  

 

Definition 1.2.2.2.3.  ROUTES and LOOPS. 

A denumerable route (DR) between nets is defined as follows: 

     1°   any linkage between two nets is a route between those nets, and 

     2°   if P is a DR between net s and t, and  Q is a DR between t and net u, then PQ is a DR 

           between s and u. 

DR can also be seen as an inversive and transitive relation in the set of the nets, if “linkage” is 

interpreted as a binary relation in the set of the nets. Any route can also be denoted by the 

catenation of the nets linked with each other in the route. Cf. paths and cycles  Müller J (1997) .  

    We define an in-/out-one-way DR  (in-/out-OWR) between nets as transitive relation (“linkage” 

is a binary relation) among the set of the nets as follows: 

     1°   any linkage which is an in-/out-linkage of net s and on the other hand an out-/in-linkage  

           of  net t is an in-/out-OWR from s to t, and 

     2°   if P is an in-/out-OWR from net s to net t, and Q is an in-/out-OWR from t to net u, 

           then PQ is an in-/out-OWR from s to u, and we say that s in-/out-dominates u and u  

           out-/in-dominates s.  

Nets s and t are A- or |A|-routed with each other, if A is the set of routes between them. Cf. Trace 

semantic  (van Glabbeek RJ (2001); Aceto L, Fokkink WJ, Verhoef C (2001)). 

Triple (N,R,f), where N is a jungle, R is a set of OWR´s and f is a mapping connecting the 

elements of R  to pairs of nets, describes graph (Rozenberg G, Salomaa, A ed. (1997); Müller J 

(1997)). 

 

If there is no need to distinguish in- and out-arities from each other we write nets simply 

compounding indexes for in- and out-arities to be one index and interpret out-arities as in-arities. 

 

An DR from a net to itself is a loop of the net, and outside loop, if furthermore in the route there is 

a linkage to outside the net; otherwise it is an inside loop of the net. The loop where each linkage is 

among the linkages of the same jungle, is an inside loop of the jungle. OWR´s which are loops (OWR-
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loops) are called directed loops. A bush is a jungle which has no inside loops and elementary, if it has no 

parallel linkages between its nets. 

 

The following is an example of equal nets, containing an inside directed loop; , ,  and  are 

nets, not including to arities ( stands for  in-arity, 
–
  for out-arity) nor frontier letters: 

s = t(t 
–
 v1 v(v1 ,v2 

–
 u2q ; 

–
 v2) ;  

–
 tu2u(u1, u2t s ; 

–
 u1, 

–
 u2v2r)) 

q = u(u1,u2 
–
 ts ; 

–
 u1, 

–
 u2v2 r) 

r = v(v1 ,v2 
–
 u2q ; 

–
 v1ts, 

–
 v2) 

 

encg(s) = enc({u,,,r,q,,,t,v}) 

encg(q) = enc({u,,,r,s}) 

encg(r) = enc({,,v,s,q}) 

 

This yields s,q and r are enclosements of each other and we have s = q = r. 

 

 

 

1.2.3   Realizations, Algebras and Homomorphisms 

 

In this paragraph we introduce the notions of nets in semantic point of view referring to algebras 

overall. We represent generalization for more common -algebra definition (Aceto L, Fokkink 

WJ, Verhoef C (2001); Burris S, Sankappanavar HP (1981)) – concerning nets. Net rewriting, 

represented closely later, can be guided by realizations of nets which realizations can be 

understood also to correspond on temporal logic and models Gabbay DM, Hogger CJ, Robinson 

JA (1995). Due to the generic essentiality relations between algebras in the respect of free 

generation and morphisms are briefly taken into the consideration. 

 

Definition 1.2.3.1. OPERATIONS and XΞ-ALGEBRA.  The represented definition for nets 

allows upstream subnets of nets to influence in producing the images of realizations of the roots 
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of the nets. An (upstream related or look-ahead) AXAΞA-algebra  A , A ⊆ , XA ⊆ X, ΞA ⊆ Ξ, is a 

pair consisting of a set A (including ΞAin),  and a mapping, an operation assigning mapping, that 

assigns to each operator of  A∪XA∪ΞA  (A ⊆ , XA ⊆ X, ΞA ⊆ Ξ) A-operation, to (,)-ary 

operator A a relation, (α,)-ary operation  A : A
α 

  F
   

out(X,Ξ) 

 ↦ A, where  = in-rank() and 

 = out-rank(), and to each letter xXA  operation  xA  for which xA (a,t) = a, whenever aA,  

 

tF
   

out(X,Ξ), and to each arity letter ΞAin constant operation  A in ΞAin. The operations of the 

ground letters are defined by the constant images in A. For simplicity we write A = (A,AXAΞA) 

and assume the operation assigning mapping to be known. We say that B = (B,BXBΞB), where 

B (including ΞBin) is a subset of A, is a subalgebra of A , if  
B
 = A |B

α 
  F
   

out(X,Ξ) 


, and the 

image set of 
B
 is in B, whenever B , and x

B = xA|B and B = A|B. Set B is called a closed 

subset of A. Sub(A) symbolizes the set of all subalgebras of A.  It is worth to mention that up-

subnets in realizations of root revealing nets are important as e.g. in TD (defined later), where 

images of operations may in that way be selected to direct to desired in-arities. For each AXAΞA-

algebra  A = (A , A∪XA∪ΞA) we define the power algebra of  A , P(A) = (P(A) , P(A)∪XP(A)∪ΞP(A)), 

where for each of its element A´ and operation 
P(A)

 ,  A´
P(A)

 = {aA : aA´}. 

 

Definition 1.2.3.2.  XΞ-NET ALGEBRA. Algebra FΞ(X) = (F(X,Ξ), XΞ) defined so that for 

each operator  and XΞ-nets  si, iI, and j F
    

out(X,Ξ), jJ 

           
F

Ξ(X)
(si ; j | iI, jJ) = (i ; j | iI, jJ), if  0 , and 

           
F

Ξ(X)
(si ; j | iI, jJ) =  , if 0 , 

whenever for each iI, iF
    

in(X,Ξ)  and iL = si , and 

            
F

Ξ(X)
(s) = s    for each s0∪X∪Ξ and X∪Ξin ,  

is called the XΞ-net algebra or free algebra. If in the XΞ-net algebra we interchange in each 

ranked letter the in-arities and out-arities we will get the co-algebra of  the XΞ-net algebra. 

 



 25 

Definition 1.2.3.3. REALIZATION of NETS. Operation A is A-realization of , whenever 

0∪X∪Ξ.  Let t = s(i ; j | iIs
UN, jJs

UN) be a net. Then  

      tA = sA(iL
A, j | iIs

UN, jJs
UN, CtA) 

is A-realization of t, where CtA is a sample of conditions to be fulfilled (normally assumed to be 

known). If net t is given in the form t = s(;), then we can write A-realization of t 

      tA = sA(L
A,), 

when L
A is a Cartesian element where each projection of L is replaced with its A-realizations. 

For jungle T we denote TA = {tA : tT}}, and the set of A-realizations of all XΞ-nets is denoted 

F(X,Ξ)A.  

     Net s is called the carrier net of sA. Let A = (A,AXAΞA) be a AXAΞA-algebra. We may also use 

notation t = (tA) – A, and for jungle S, S = (SA)-A. The set of the A-operations of the nodes in t is 

entitled A-nest of t or the nest of tA, t and tA being said to be beyond any subset of that nest.   

     Let t = s(i ; j | iIs
OC(X), jJs

UN) be a net, where Is
OC(X) is such an in-rank index set of s that for 

each (iIs
OC(X)) iF

     

in(X,Ξ)
(1)

. Let Ao = {ai : aiA, iIs
OC(X)} be an indexed subset of A, a set of 

inputs. 

     tA(Ao) = sA(iL
A(ai), j | iIs

OC(X), jJs
UN, aiAo, CtA) 

is called tA-transformation of Ao, the set of outputs of  tA for Ao. Important examples of realizations are 

equations, where e.g. symbol “=” is the realization of a ranked letter with the in-rank two, and 

transformations are needed to considering the validity. 

    Transformations are essential in the context of rewriting systems. 

    Let r be a binary relation in P(A). A-realization tA is r-confluent , if tA(A) r tA(B), whenever ArB. 

 

 

                                  Net realization descriptions 

 

Lemma 1.2.3.  Each demand or claim can always be presented with realizations of nets. 

PROOF.    Each presentable elementary claim is actually a relation in some algebra.  
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Definition 1.2.3.4.  Let  A = (A,XΞ) be a XΞ-algebra. Let R, S and T be A-realizations of 

some nets. Now we are introducing for only descriptive use some special nets by example wise: 

Transformer graph (TG) T  over {R,S,T}, denoted TG({R,S,T}), is a realization of the net having 

carrier nets of R, S and T among its enclosements. If the set, for which a transformer graph is over, 

is singleton, we speak simply of transformer. If H is a set of realizations, set K being one of the 

subsets of H, we say that T  is beyond K whenever T  is TG(H) and we denote TG(|K). 

 

Realization process graph (RPG) contains in an addition to TG input and output elements as its nodes 

for concerning realizations. Cf. model theory Chang CC, Keisler HJ (1973), process graphs van 

Glabbeek RJ (2001), automata  Rozenberg G, Salomaa A, ed. (1997).  

 

Generally speaking: any RPG is a TG-associated net, where the projections of Cartesian 

elements of A in the RPG are in- and up-connected, respectively, to at most one A-realization in 

the TG. 

 

Transformation graph (TFG) comprises only input and output elements of RPG. 

 

Definition 1.2.3.5.  GENERATORS.  Let A = (A,AXAΞA) be an algebra. We say that subset H of  

A is a generator set of  A  and is generating  A , and we denote [H] = A, if  

     A = ∩( B : H⊆B, (B,BXBΞB) Sub(A)).  

H is called a base generator set of A, if there is no genuine subset of H generating A. Notice that 

algebra may have several base generator sets. 

 

Definition 1.2.3.6. HOMOMORPHISM. Let A = (A,AXAΞA) and B = (B,BXBΞB) be two algebras. 

Let  : A ↦B be an indexes preserving relation. The homomorphic extension of  from A to B, shortly 

homomorphism , is a relation, denoted ̂   : A ↦ B , defined such that  

̂  (a) = (a) , whenever aA, and 

̂  (A(ai;j | iI, jJ)) = 
B
(̂  (ai);j | : iI, jJ),  
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whenever  and  (ai;j | iI, jJ)  A
|I 

|
   F

  
out(X,Ξ)  

|
 
J 

|
 . Homomorphism : A ↦ A  is 

automorphism.  

 

Definition 1.2.3.7.  FREE GENERATING. Let K the set of all XΞ-algebras. We say that free 

generating set Ao generates A = (A,) freely over K, if there is such subset Ao⊆A that  

     (i)  [Ao] = A and  

     (ii) for each algebra B = (B,) in K and each relation :Ao↦B, there is the homomorphic   

           extension of  from A to B. 

 

The next clause represents the well known result for trees, at this time for more general aspects: 

nets. 

 

Proposition 1.2.3. Set Ξ∪X∪0 is the base generator set of XΞ-net algebra FΞ(X) and 

generates it freely over all XΞ-algebras. 

PROOF.   First we prove that Ξ∪X∪0 is the base generator set of FΞ(X) and for that purpose 

we define for each jungle Q⊆F(X,Ξ) the following sets:  

     G(Q) = Q∪{
F

Ξ(X)
(si; j | iI, jJ) : siQ, j{ : F

   

out(X,Ξ), LQ}, \0}, 

 

     G0
(Q) = Q ,   

     G
n+1

(Q ) = G(G
n
(Q)), n lN0 , 

      G  =  ∪( G
n
(Q) : nlN0 ). 

Let  and I´⊆I and J´⊆J, and si,tj G, iI´, jJ´. Then (  iI´, jJ´ ) (  mi,nj lN0 ) 

siG
m

i (Q) and tjG
n
j (Q). Therefore  

      siG
m
(Q), iI´ and tjG

m
(Q), jJ´, 

where m is the maximum of the numbers nk , kI´∪J´. We can write  

    
F

Ξ(X)
(si; j | iI, jJ)  G(G

m
(Q)) = G

m+1
(Q ) ⊆ G, where jL=tj. 

This yields G generates itself. Because Q  ⊆ G, it is in force 



 28 

     [Q] ⊆ G. 

On the other hand for each (nlN0) G
n
(Q)⊆[Q]. Therefore G⊆[Q]. If Q = Ξ∪X∪0, we thus 

have G = F(X,Ξ), and finally [Ξ∪X∪0 ] = F(X,Ξ). 

     Let then A = (A,AXAΞA) be an XΞ-algebra and : Ξ∪X∪0↦A an indexes preserving 

relation. We define relation  : FΞ(X) ↦ A such that  

(γ) = (γ) , whenever γΞ∪X∪0, and 

(
F

Ξ(X)
(si; j | iI, jJ)) = 

A
((si);j | : iI, jJ),  

whenever  and (si;j | iI, jJ)  A
|I 

|
  F
 

out(X,Ξ) 

|
 
J 

|
. Clearly  is the homomorphic 

extension of  from FΞ(X) to A.  

 

 

1.3. §      Net homomorphism, Substitution and Matching 

 

Definition 1.3.1.   NET HOMOMORPHISM. 

Let X and Y be frontier alphabets,  and  ranked alphabets and Ξ and Ξ arity alphabets. We 

introduce new distinct rank-indexed arity alphabets Ein = {i : iEin} for in-arities and Eout = {i : 

iEout} for out-arities respectively, disjoint from all other used alphabets.   

Net homomorphism h: F(X,Ξ)∪F
     

(X,Ξ) ↦ F(Y,Ξ)∪F
     

(Y,Ξ)  is a relation defined such that  

     h(t)  =  h()( h(i) ;  h( j) | iEinh 

() , j Eouth 

())  for each  t = (i ; j | iI, jJ)  F(X,Ξ), 

and 

h: 0∪X∪Ξ ↦ F
     

(Y,Ξ)
(1)∪0∪Ξ  is an initial rewriting relation, where h()  Ξ  for each  

 

Ξ  and h()0 whenever 0 ; 

h|X named the initial manoeuvre rewriting relation, and h| Ξ the initial arity rewriting relation ; 

h:↦F(Y,Ξ∪in∪out)∪ is a -ranked letter rewriting relation , 

h(u)  F
     

in(Y,Ξ)
(1)

, and h(u)L = h(uL), whenever uF
     

in(X, Ξ)
(1)

 and uL0, 
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h(u)  F
     

out(Y,Ξ)
(1)

, and h(u)L = h(uL), whenever uF
     

out(X,Ξ)
(1)

 and uL0, 

h(u)  F
     

in(Y,Ξ)
(1)

 ∪ F
     

in(Y,Ξ)
(2)

, whenever uF
     

in(X,Ξ)
(1)

 and uLX, 

h(u)  F
     

out(Y,Ξ)
(1)

 ∪ F
     

out(Y,Ξ)
(2)

, whenever uF
     

out(X,Ξ)
(1)

 and uLX, 

h(u)  F
     

in(Y,Ξ)
(2)

, and h(u)L = h(uL), whenever u  F
     

in(X,Ξ)
(2)

, and 

h(u)  F
     

out(Y,Ξ)
(2)

, and h(u)L = h(uL), whenever u  F
     

out(X,Ξ)
(2)

. 

 

     Relation h is said to be down linear, if the number of the positions of each letter of Ein in h() 

is one at most whenever ; up linear is defined respectively for the letters in Eout. Relation h is 

down preserving (otherwise down deleting), if | Einh 

() | = |I| for each , respectively is defined up 

preserving and up deleting. We call h down alphabetic, if h(X∪Ξ)⊆Y∪Ξ, and for each ,  

h() = (i ; j | iEin , jEout), where , cf. tree homomorphism Denecke K, Wismat SL (2002). 

Notice that because net homomorphism is in its nature “replacing”, it can be seen as a special 

type of rewriting systems. 

 

 

Definition 1.3.2.   SUBSTITUTION.  

Let T and S be arbitrary jungles and P a family of sets of positions. We define  

T(P S : *)  =  ∪(v(i
(1)

 νis ; j
(1)

 js)  :   t = v(i ; j | iIv
UN, jJv

UN) ,   p(t,iL)P,  

                               p(t, jL)P,tT, sS, *, νis  soutg , js sing ). 

That is T(P S : *) is the jungle which is obtained by “replacing” (considering conditions *) all 

the subnets of each net t in T, having the position set in family P, by each net in S. Notice that 

the result may be T (that is no execution in replacing), if the arities of the replacing nets and on 

the other hand the arities of the nets in T are different or P does not represent any positions of 

subnets in nets of T. 

     If each position set of family V of subnets of each net t in T is wished to be replaced by each 

of elements in S, we write simply T(VS).  

     Next introduced substitution relation is a special example of net homomorphisms, an 

essential component in rewriting. 
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     Net substitution relation (here f) is such a net homomorphism in F(X,Ξ)∪F
  

(X,Ξ) that each 

ranked letter rewriting relation is identity relation, as well as the initial arity rewriting relations, 

and for each νF
     

(X,Ξ)
(2)
) f(ν) = ν

(1)
 ν

(2)
 f(νL) and for each μF

     

(X,Ξ)
(1)
) f(μ) = μ

(1)
f(μL).  

     Let Xo be a set of frontier letters. Net substitution relation f is said to be Xo-joining , if  

(i) {f(x)L : xXo} is singleton and 

(ii) the arity of the gluing form of each letter in Xo is occupying an unoccupied arity of f(x)L , and  

      |Xo| is the cardinality of the set of those unoccupied arities. 

 

     It is worth to remember that if an image of net substitution relation for a leaf is empty (set), 

the arity having been occupied by that leaf is after substitution an unoccupied arity.  

     Let P and T be arbitrary jungles. If S is a catenation of substitutions such that T = S(P), we say 

that there is an S-substitution route between P and T. 

 

Definition 1.3.3.  INSTANCE.  Net t is an instance of net s, if t = f(s) for some net substitution 

relation f. Notice that s is a context of t for the in-glue form of net f()L , whenever X∪0 is in 

s. Notice that s = conP(f(s)), if P  { p(f(s),s),  ∪(p(f(s),f(x)L) : xX∩L(s))}.  

 

Definition 1.3.4.   MATCHING.  Net s is said to match t by net substitution relation f in p(t,s), in a 

so called matching point, if f(s)sub(t); thus apex(s)enc(t). If net s matches net t, we say that the 

genuine tie-arities of s in the linkages between s and t are the matching arities of s in t, denoted 

MA(t,s).  

 

 

1.4. §                               Covers and Partitions  

 

Definition 1.4.1.  For jungle T a type ρ of net (e.g. a tree) being in enc(T) is of maximal ρ-type in 

enc(T), if it is not an enclosement of any other ρ-type net in enc(T) than of itself. The other ρ-

type nets in enc(T) are genuine.  
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Definition 1.4.2.  COVER of NET.  A set of nets is said to be a cover of net t, if each node of t is 

in a net of the set. We denote the set of all covers of net t with Cov(t), and for jungle, say T, we 

agree Cov(T) = ∪(Cov(t):tT). 

 

Definition 1.4.3.  SATURATION of NET.  Cover A saturates net t, if A⊆enc(t). We denote the set 

of all saturating covers of net t with Sat(t), and for jungle, say T, we agree  

Sat(T) = ∪(Sat(t):tT).  

 

E.g. A saturating cover of net t is natural, if each net in the cover is of maximal -type, where -type net 

is the net the nodes having only one out-tie (resembling in that respect tree).  

 

Definition 1.4.4.   PARTITION of NET.  A saturating cover of net t is a partition of t, if each node of t is 

exactly in one net in the cover. We reserve notation Par(t) as for the set of all partitions of net t, and for 

jungle, say T, we agree of notation Par(T) = ∪(Par(t):tT). 

For an arbitrary jungle A we define the partition induced by jungle A  

(denoted PI(A)) = {⋓A  ́ ʅ {⋓A´ :́ A´⊂A´ ,́ A´´P(A)} : A´P(A)}.  

 

We can write the following proposition: 

 

Proposition 1.4.   “A correlation between partitions and covers of nets”.  

For any net s and jungle E 

                ECov(s), if and only if  PI(E)⋓sPar(s). 

 

Notice that  if A is a saturating cover of net t, then PI(A) is a partition of t.  
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1.5. §                                                      REWRITE 

 

In this chapter we introduce rewriting by using algebraic presentation described earlier regarding 

edges as ties or linkages which unite node- and on the other hand edge-rewriting (Thomas W 

(1997); Engelfriet J (1997)). Term rewriting as a special case of here presented rewriting can be 

probed e.g. in (Ohlebusch E (2002); Meseguer J, Goguen JA (1985)). 

 

1.5.1 

 

Definition 1.5.1.1.   RULES.  A rewrite rule is a set (possibly conditional) of ordered ´jungle-

jungle´ -pairs (S,T), the elements of which are entitled rule preforms, simply rules, if there is no 

danger of confusion, denoted often by S→T, S is called the left side of pair (S,T) and T is the right 

side of it. We agree that right(R) is the set of all right sides of rule preforms in each element of set 

R of rewrite rules; left(R) is defined accordingly to right(R). The frontier letters of nets in those 

rule preforms are called manoeuvre letters.  

 

 

  

               Types of rewrite rules 

 

 Next we shortly represent some general types of rewrite rules.  

 

Definition 1.5.1.2.  A rewrite rule is said to be simultaneous, if it is not a singleton van Glabbeek 

RJ (2001). The inverse rule of rule φ, φ
-1

, is the set {(T,S) : (S,T)φ}. A rule is single, if it is 

singleton. 

     A rule is an identity rule, if the left side is the same as the right side in each rule preform of the 

rule. A rule is called monadic, if there is a net homomorphism connecting the left side to the right 

side in each rule preform of the rule. If for each rule preform r in rule φ, hg(left(r)) > hg(right(r)), 

we call φ height diminishing, and if hg(left(r) < hg(right(r)), φ is height increasing; if hg(left(r)) = 

hg(right(r)), we call φ height saving.  

     A rule is alphabetically diminishing, if for each rule preform r  in the rule there is in force: 
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(i) right(r) is a ranked net or hg(right(r)) = 0 or (ii) hg(left(r)) = 2, root(right(r))  L(left(r)) and 

hg(right(r)) = 1. For an abbreviation reason for a set of rules R  we may use notation  

left(R ) = { left(r) : r φ, φR  } and respectively for the case of right side.  

 

More specifically: 

Definition 1.5.1.3 Any rule and the concerning pairs (i.e. rule preform)  in it are said to be  

1°    manoeuvre increasing, if for each of its pairs, r , fron(left(r)) ⊂ fron(right(r)),  

2°    manoeuvre deleting, if for each of its pairs, r , fron(left(r)) ⊃ fron(right(r)),  

3°    manoeuvre saving, if for each of its pairs, r , fron(left(r)) = fron(right(r)),  

4°    manoeuvre changing, if at least for one of its pairs, r ,  

        fron(left(r)) ⊈ fron(right(r)) and fron(right(r)) ⊈ fron(left(r)), 

5°    manoeuvre mightiness saving, if for each of its pairs, r , 

        |p(left(r),x)| = |p(right(r),x)| , whenever x is a manoeuvre letter,  

6°    arity increasing, if for each of its pairs, r , Uno(left(r)) ⊂ Uno(right(r)),  

7°    arity deleting, if for each of its pairs, r , Uno(left(r)) ⊃ Uno(right(r)),  

8°    arity saving, if for each of its pairs, r , Uno(left(r)) = Uno(right(r)),  

9°    arity mightiness saving, if for each of its pairs, r , 

        |p(left(r),ξ)| = |p(right(r),ξ)| , whenever ξ is an unoccupied arity letter,  

10°  (ranked) letter increasing, if for each of its pairs, r , L(apex(left(r))) ⊂ L(apex(right(r))),  

11°  (ranked) letter deleting, if for each of its pairs, r , L(apex(left(r))) ⊃ L(apex(right(r))),  

12°  (ranked) letter saving, if for each of its pairs, r , L(apex(left(r))) = L(apex(right(r))),  

13°  (non-arity) letter mightiness increasing, if for at least one of its pairs, r , 

            | ∪(p(apex(left(r)),z) : z is a frontier or ranked letter) |  < 

            | ∪(p(apex(right(r)),z) : z is a frontier or ranked letter) | , 

14°  X-manoeuvre letter increasing, decreasing, saving, if 

        L(left(r)) ∩ X    ⊂ , ⊃ , =   L(right(r)) ∩ X  , respectively,   

15°  X-manoeuvre mightiness increasing, decreasing, saving, if for each xX 
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        |p(left(r),x)|   < , > , =  |p(right(r),x)|  , respectively.   

 

     Rule φ is left linear, if for each r  φ and manoeuvre letter x there is in force |p(left(r),x)| = 1, and 

right linear, if  |p(right(r),x)| = 1. A rule is totally linear, if it is both left and right linear. 

 

 

1.5.2           Renetting systems and Application 

 

We introduce systems using rewrite rules to transform nets, and type wise to define sets of rules 

with special instructions regarding to apply them. 

 

A set consisting of rewrite rules and of conditional demands (possibly none) Ohlebusch E (2002), 

(for the set of which we reserve symbol C ) to apply those rules is called renetting system, RNS in 

short, Engelfriet J (1997), and a ΣX-RNS, if its rewrite rules consist exclusively of pairs of ΣX-

nets. Conditional demands may concern application orders cf. process algebra with timing Baeten 

JCM, Middelburg CA (2001), probabilistic processes Jonsson B, Yi W, Larsen KG (2001), priority in 

process algebra Cleaveland R, Lüttgen G, Natarajan V (2001). The objects to be applied may be 

required to possess certain nodes, linkages or neighbours or to be carrier nets for operations in 

selected algebras. Desired substitutions may be “context sensitive” i.e. chosen to be of left or 

right side and matching positions where applications are expected to be seen to happen may also 

be prerequisites. Notice that rules in RNS´s can be presented also exclusively by net types: pairs 

of rules in RNS´s defined in accordance with the amount of the arities or nodes possessed by 

them  Engelfriet J (1997),  edge-replacing  Burkart O, Caucal D, Moller F, Steffen B (2001).  

 

Definition 1.5.2.1.  A renetting system, shortly entitled RNS, is finite, if the number of rules and C in 

it is finite. A RNS is said to be limited, if each rule of it is finite and in each pair of each rule the 

right side is finite and the heights of the nets in the both sides are finite. For the clarification we 

may use notation C(R ) instead of C for RNS R . A RNS is conditional (or sensitive), contradicted 

nonconditional or free, if its C is not empty. A RNS is simultaneous, contradicted nonsimultaneous, if it 

has a simultaneous rule. 
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    A RNS is elementary, if for each pair r in each rule of the RNS is monadic or alphabetically 

diminishing. If each of the rules in a RNS is of the same type, the RNS is said to be of that type, 

too. For each RNS R  we denote R -1 = R (φ ← φ 

-1
). 

 

Definition 1.5.2.2.   APPLICATION TYPES.  For given RNS R , jungle S is R-rewritten to jungle 

T (rewrite result), denoted S →R  T (called R –application), and is reduced under R  or by rule φ in R , 

and is said to be a rewrite object  for R  or φ respectively, denoting   T = Sφ (the postfix notation is 

prerequisite), if the following “rewrite” is fulfilled: 

T = ∪(S( p     (right(r))g ) : left(r)  matches s in p by some net substitution mapping fsp , r φ, gGsp  ,p p(s), sS, C(R )), 

 

where Gsṕ s are sets of net substitution relations. Mapping fsp is called left side substitution relation and 

each g in Gsp is right side substitution relation, c.f. under conditional demands “extra variables on 

right-hand sides” conditional Rewrite Systems Ohlebusch E (2002). We say that RNS is S-instance 

sensitive (S-INRNS), if for a rule φRNS and for each sS, pp(s), Gsp ≠ fsp , and S-mapping instance 

sensitive (S-MINRNS), if right side substitution relations are mappings. If furthermore all right side 

substitution mappings are singletons, we entitle SingMINRNS to indicate RNS´s of that nature. 

If all rules in RNS are obligated to satisfy the demands, instance sensitiveness of RNS is said to be 

thorough. Notice that for substitution relations, C(R ) may contain some orders liable to 

substituting manoeuvre letters in the rewrite process (substitution order), especially if rewrite 

objects have outside loops with the apexes of left sides of pairs in rules or R  is manoeuvre 

increasing and instance sensitive. Instructions concerning binding right side substitution 

relations to specific rules in RNS might also have been included in C(R ). 

     We say that R  matches a rewrite object, if the left side of a rule preform matches it. We say that S is a 

root of T in R   and T is a result of S in R . Observe that T = S, if R  does not match S; of course C may 

contain demands for necessary matching. The enclosements at which rewrites can take places (the 

sets of the apexes of the left sides in the pairs of the rules in RNS´s) satisfying all requirements 

set on the RNS are called the redexes of the concerning rules or RNS´s in the rewrite objects. For 

RNS R  and jungle S we denote 

        SR  =  ∪(Sφ : φR  ). 
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Rule φ of R  is said to be applied to jungle S, if for each sS, s has φ-redexes (redexes of φ in s) 

fulfilling C(R ) and thus φ is applicable to S and S is φ-applicable . RNS R  is applicable to S and S is 

R-applicable , if R  contains a rule applicable to jungle S.  

       For RNS R  we define R –transformation relation on F(X,Ξ)  

       R   = {(s,sR ) : s F(X,Ξ)}. 

 

Lemma 1.5.2. Any relation can be presented with a RNS and its rewrite objects. On the other 

hand with any given RNS we have RNS-transformation relation. 

PROOF.   Let r be a relation. Constructing RNS R  = {a → b : (a,b) r} we obtain 

r = {(a,a(a → b)): a → b  R  }.  

    

      It is quite clear that a net cannot be R-rewritten, if R  is not instance sensitive and the 

matching points of the left sides of the pairs in the rules of R  have outside loops to the net, because the 

apexes of the right sides of those pairs must be enclosed in some images of the right side substitution 

relations. 

 

Definition 1.5.2.3.   We call RNS feedbacking in respect to a net, if while applying a rule in it for that 

net, elements in the image sets of each right side substitution relation regarding to the preforms 

in the involving rule overlap that net; feedbacking for a rule is total, if the demands concern all 

elements in the image sets (always total, if the substitution relations are mappings since the 

image sets are then singletons) and partial, if RNS is feedbacking but not totally. If instead of 

only overlapping, we claim the enclosement condition for elements in the sets of the right side 

substitution images, feedbacking RNS is innerly feedbacking - which is e.g. the case in not instance 

sensitive RNS´s – and if no overlapping is enclosement, RNS is outherly feedbacking. If the net in 

concern of feedbacking is the applicant for RNS, we speak of self feedbacking. The form of innerly 

self feedbacking RNS in respect to a net, say t, where for each rule preform r there is in force 

equation tr ʅ apex(right(r)) = t ʅ apex(left(r)), we name environmentally saving in respect to the 

rewrite object in concern. If all rules in RNS satisfy the feedbacking demands we speak of 

thoroughly feedbacking RNS. It is worth to remind that INRNS´s are capable to join distinct 

applicable nets. 
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By the cardinality of the image sets of right side substitution relations and on the other hand for 

each left side substitution mapping by the cardinality of the set of right side substitution relations 

regarding to mutual rules, the necessary rules in RNS´s can be compensated so not to exceed 

finite number – the right side substitutions relations can be defined type wise, i.e. setting their 

image sets to consist nets of certain type (e.g. limited number of nodes or unoccupied arities). In 

feedbacking RNS´s right side substitution relations may be regulated to depend on the type of 

rewrite objects (thus covering large portions of object nets by a limited number of regulations 

and not needing to raise the amount of rules possibly to infinite), e.g. replacing manoeuvre 

letters, existing only in the right-handed sides of pairs in rules, by overlapping nets in specific 

positions, if any. 

     It is somewhat of worth to mention that RNS´s, not instance sensitive, can own the same 

rewriting power than INRNS´s, but then we may be compelled to accept infinite number of 

manoeuvre altering rules – e.g. in the case we have a manoeuvre letter increasing INRNS, where 

for left side substitution mapping f and right side substitution relation g, g(y)L overlaps f(x)L for 

some manoeuvre letters xy (i.e. rewrite results are expected to contain loops) and there is 

expected to be an infinite number of rewrite objects for which RNS is to be constructed, or if the 

cardinality of set {f(x)L : xX} is infinite.  

 

The following example offers a manifestation of particularity in substitution orders: 

Let  a1,b1, c1, d1 be out-arities and a2,b2, c2, d2 are in-arities, f standing for a left side and g 

a right side substitution relation, 

       f(x)L, g(x)L  [S], f(x) = g(x), S = d(d2c1c(c2; c1); d1) 

       f(x) = c2s1 , s1 = c(c2 ; c1d2 d(d2; d1)) ([S]), s1 is a representative of S, 

       g(y) = d1d(d2c1t1 ; d1), t1 = c(c2b1t2; c1d2S) , t2 = b(b2g(y) ; b1),  

 and g(y)L and f(x)L are overlapping each other, if possible,         

       r = a(a2 ; a1x)  b(b2y ; b1x). 

If x is substituted first, the result offers fixing point for y-substitution, yielding a loop structure 

as a result. If on the other hand y is firstly substituted, the result is totally of a different nature, 

where there is a continuously growing chain of iterated nets via y-substitutions. 

 

For left side substitution mapping f in loop situations between images must be f(x)L overlapping 

f(y)L for some manoeuvre letters xy , and one of them must contain itself as a subnet; illustrated 
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in the next example of an application of manoeuvre cardinality increasing, not instance sensitive 

rule, with rewrite object containing a loop.  

 

Let   a1,b1, 1 be out-arities and a2,b2, 2 are in-arities,  

f(x) = a2t1, t1 = a(a2; a1b2t2), t2 = b(b2; b12t3), t3 = (2; 1f(x)) 

f(y) = b1b(b2a1a(a2; a1) ;b1) 

and f(x)L and f(y)L  are overlapping each other. The result via rule (x;y)  (x;y,y) is 

unaffected by the substitution orders between x and y. 

 

In the following our presumption for RNS´s are not to be instance sensitive, if not indicated 

otherwise. 

 

 

Definition 1.5.2.4.  DERIVATION.  Derivation in set R  of RNS´s is any catenation of applications 

of RNS´s in R  , say D , such that the rewrite result of the former part is the rewrite object of the 

latter part of the consecutive elements in the catenation. The rewrite results of the elements in 

the catenation are called D -derivatives of the rewrite object for the first element, and the 

catenation of the corresponding rules is entitled deriving sequence in R , for which in an operational 

use the postfix notation is the default. We agree of the associativity that for any deriving sequence 

q and any jungle S 

Sq = (Sq1)q2 , if  q = q1q2 . 

 

 

1.5.3                Transducers and the Types 

 

 

Definition 1.5.3.1.  TRANSDUCER.  For each , iI and jJ , let r be a bijection, RNS-

attaching mapping, joining a set of RNS´s to each triple (,i,j). Let  A = (F(X,Ξ),AYAΞA) be a 

AYAΞA-algebra, where for each  

     A : F(X,Ξ)
α 

  F
   

out(X,Ξ) 

 ↦ F(X,Ξ), where  = in-rank() and  = out-rank(), 

is such an operation relation that  
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     A(siL; j | iI, jJ)  ∪(siLr(,i,j): iI , jJ). 

A  is called a renetting algebra. For any net tF(X,Ξ) realization tA is called R-transducer (R-TD) 

over RNS-attached family R = {r(,i,j) : ∩L(t), iI, jJ} of sets of RNS´s and it is also 

entitled an interaction between those RNS´s. Notice that A  with in-rank() = out-rank() = 1, 

represents RNS-transformation relation. Referring to a set of TD´s, say G, in concern for the 

realizations, we use notation (F(X,Ξ),G) for the renetting algebra. We want to notify that 

samples of possible conditions liable to realizations of upstream subnets in carrier nets of 

transducers may be used to set extra demands for selecting desired operating RNS´s to influence 

data flows from targeted in-arities. That notion is expressed in the next lemma. 

     We say that a TD matches a rewrite object, if any of its RNS does it. Let I be an arbitrary index 

set, and for each iI let R  i be a TD, thus we denote Cartesian element  R (I) = (R   i: iI), and  

a R  (I) = (e[I](i,a  )R   i : iI), whenever a   is a Cartesian element. For any applicant S  SR   is 

called the result of S in R  .  

 

Lemma 1.5.3.1.  The conditional demands for TD´s can be presented as a TD´s having no 

demands, and thus any TD, let us say R , can be given as a TD with no demands and the carrier 

net of that TD having the enclosements of the carrier net of R  in its enclosements. 

PROOF.   The claim is following from lemmas 1.2.3 and 1.5.2.  

 

Definition 1.5.3.2.  TRANSDUCER TYPES.  If each RNS in a TD is of the same type (e.g. 

manoeuvre saving), we say that the TD is of that type. A TD is said to be altering, if while 

applying it is changing, e.g. the number of the rules in its RNS´s is changing (thus being rule 

number altering). A TD is entitled contents expanding, if some of its RNS´s contain a letter mightiness 

increasing rule preform. A TD is called trivial, if each rewrite objects for it is the same as the 

result in the TD. A TD is called upside down tree TD, if each ranked letter in the carrying net of the 

TD has only one in-arity. 

     A TD is a transducer graph (TDG) over a set of transducers, if the set of the carrying nets of all 

transducers in the set is a partition of the carrying net of the TD. I.e. TDG is a special case 
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among transformer graphs. Any transducer graph over set T is denoted TDG(T), and any 

TDG(T) is beyond each subset of T, analogous with TG relevant to that issue. 

     A TDG(T) is entitled direct (in contradiction to indirect in other cases), if the only claims for the 

TDG(T) are those of the TD´s in T. 

     Any TDG over a set can be visualized as a TG over the same set.   

 

Lemma 1.5.3.2. The carrying net of any altering TD can be seen as an enclosement of the larger 

carrying net of some nonaltering TD. 

PROOF.   Straightforwardly from lemma 1.5.3.1.   

 

Definition 1.5.3.4. TD-TRANSFORMATION RELATION. Let R be a transducer. We define R -

transformation relation  R   in the set of the jungles such that 

                   R   = {(t,t R   ) : t is a jungle}. 

We say that two transducer P and R  are the same, P  = R  , if  P   = R   . 

 

Definition 1.5.3.3.  NORMAL FORM and CATENATION CLOSURE.  D (R ) is the notation for 

the set of all derivations in TD R . If for jungle S and TD R  , S R  = S , S is entitled R-

irreducible or of normal form under R  . For the set of all R-irreducible nets we reserve the notation 

IRR(R ). For each jungle S and TD R  we denote the following: 

SRˆ =  S R *  ∩ IRR(R ), 

where R*, the catenation closure of  R  , is  the transitive closure of the rules in R   . 

Let R  be a TD over family R . We define normal form TD of  R ,TD^, 

               R^ =  R(R  ← R  ̂
 :  R R ). 
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1.6. §  Equations and decompositions as examples of TD´s 

 

Definition 1.6.1.  EXPLICIT and IMPLICIT RNS-CLAUSE.  Let R  and Q  be two TD´s. Let H 

be a list of symbols in , R  and Q  , where  = {=,,⊂,⊆}. If R e Q  ,where e, we call 

TDG over R  ,Q  ,e a RNS-clause (RCl), denoted E(R  ,Q  ,e). E(R  ,Q  ,) is of first order in 

respect to an element of H, if that element exists only once in the equation. 

     RNS-clauses cover also the ´ordinary´ equations (with no RNS´s), being due to lemma 1.5.2. 

     Any TD in RNS-clause E(R  ,Q  ,) is called a factor; a left handed factor or a factor of R , if  it 

exists exclusively in R  , and a right handed factor or a factor of Q , if  it exists exclusively in Q  .  

     Let K be a factor in RNS-clause E(R  ,Q  ,). We say that the RCl is a representation of K; 

specifically an explicit one (in contradiction to implicit in other cases), if  K=R and K is not a 

factor of Q . The right handed factors are composers of  Q  is a compositions of K, if  

E(R  ,Q  ,) is an explicit representation of K, and  is = . A composition of K is said to be 

linear/nonlinear, if it is a direct/an indirect TDG. Because each operation in nets can stands for a 

simple case of TD´s then that simplyfied RNS-clause equates ordinary equations with operations 

of variables. 

 

The question in automated problem solving basically is how to generate nets from enclosements 

of a probed net those enclosements being in such a relation with the enclosements in the 

conceptual nets that the particular relation is invariant under that generating transformation i.e. 

preserves invariability under class-rewriting. Therefore in the next three chapters we handle an 

idea of automated problem solving, as formal inventiveness. In problem solving, an essential 

thing is to see over details, and that is the task we next grip ourselves into by describing ideas 

such as partitioning nets by RNS´s and a connection between partitions by introducing the 

abstraction relation. We concentrate to construct TD-models for formulas of jungle pairs by 

conceptualizing ground subjects and then reversing counterparts of existing TD-solutions back 

to ground level. Then we widen the solution hunting by classifying intervening TDG-

derivations. Finally we formulate abstract quotient algebra based on congruence class rewriting 

operations. 
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2. §                                     Inventiveness 

 

 

2.1.                Recognizers and Languages 

 

Definition 2.1.1  RECOGNIZER and RECOGNITION. Let A and B be sets and let α: A ↦ B be a 

binary relation and A´ a subset of B. We define recognizer A such that  A = (α,A´ ) entitling α a 

recognizer relation and A´ a final set . Element of A, s (probed object), is said to be recognized by 

recognizer A , if sαA´. Language LA is the set of the elements recognized by A, i.e. α separates 

from probed objects those ones, which have property A´. As a special case for nets the 

recognizer relation can chosen to be  , where  is a net homomorphism and  a relation 

transforming nets to wanted realizations of them, cf. tree automata rules or tree recognizer homomorphisms 

Gécseg F, Steinby M (1997), hyper tree recognizer hypersubstitutions Denecke K, Wismat SL (2002). 

     In general: Set H satisfies transformer T via recognizer A or is a A-model of formula T, denoted  

H ⊨
A

 T, if A recognizers T –transformation of H, T (H). E.g. a recognizer relation 

(automorphism) in A giving desired truth value from T (H) we can say that H is A-solution for T , 

if the value given by the recognizer mapping is true. I.e. “validity of Boolean inference”: the nest 

of transformer consisting of elementary logical relations (Boolean) and the concerning 

recognizer relation being “truth values giving automorphism from truth values of variables in the 

carrier net of the transformer”, the final set consequently represents the value “true”or “untrue”. 

A transformer can also be RCl and H a factor in it Chang CC, Keisler HJ (1973).     

     For nets S, T and TD R  in model theoretical notation R ⊨A
 (S,T)  R  is named a A-model of 

formula (S,T), or pair (S,T) is a A-model of formula R  (denoted in that interpretation (S,T) ⊨
A R  ), 

if recognizer A (e.g. probing the truth values) is recognizing RCl  T  SR  . Cf. inferring winning 

game graphs Thomas W (1997).  
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Definition 2.1.2. Here we introduce a convenient tool, needed later in the context of abstraction 

relation. Let I be an arbitrary index set and for each i,jI let θij: Ai ↦ Aj be a binary relation 

from set Ai to set Aj. Let A   = ∏(Ai: iI) and θ  = ∏(θij : (i,j)Iθ) for some Iθ⊆I
2
. Let  

α: A   ↦ ∏(θij : (i,j)I
2
) be a binary relation, where a  α = ∏(θij : (i,j)I

2
 , elem(i,a  ) θij elem(j,a  )), 

whenever a A . The language recognized by A = (α,θ ) is θ -associated over Iθ (denoted Lθ ); if in θ  

all θij are the same, say θ, we speak of θ-associated language.  

     In other words this recognizer picks from among A   such elements, the projection elements of 

which are pair wise in a relation of set {θij : (i,j)Iθ}. Notice that θ-associated language over a 

singleton is θ-relation itself, if |I| = 2.  

 

 

 

2.2                     Problem and Solution 

 

Definition 2.2.1.  Problem T is a triple (S, A, C), where the subject of the problem S is a jungle, a set of 

mother nets, A is a recognizer and limit demands C (C(T) precise notation, if necessary)  is a sample 

of prerequisites to be satisfied in recognition processes. TD V  (T) is a presolution of problem T, if  

SV  (T)  LA , thus SV  (T) being called a solution product, and if furthermore V  (T) fulfils the 

demands in set C, V  (T) is a solution of T. E.g. solution V   may be a system, by which from 

certain circumstances S, with some limit demands (e.g. the number of the steps in the process) 

can be built surrounding SV   , which in certain state α(SV   ) (for morphism α of a recognizer) 

has a capacity characterized by the type of the elements in the final set of the recognizer. 

     We can describe a solution for a problem as wandering in a net: 

1. Starting from a given net node (mother net)  

2. to the acceptable net (solution product) ( LA ) of the TFG 

3. via the right route in the RPG (TDG-solution) (limit demands accomplishments).  

Cf.  Aceto L, Fokkink WJ, Verhoef C (2001)    mother net ⊨〈TD〉A . 
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3. §           Parallel Process and Abstract Algebras  

                                  (for Automated Problem Solving) 

 

3.1.          Partition RNS and Abstraction Relation  

 

Definition 3.1.1.  PARTITION RNS.  For each jungle (here c) we define a partition RNS (PRNS) 

W of that jungle as a RNS fulfilling conditions (i)-(iii): 

(i)     W is manoeuvre mightiness and arity mightiness saving, not instance sensitive, 

 (ii)   L(apex(right(r)))\Ξ is a singleton and its element is outside L(c), whenever rφ, φW,  

         and {(left(r),right(r)): rφ, φW} is an injection, 

(iii)   C(W) ⊇ {L(c)∩L(cWˆ) = }.  

  

In a special case where the left sides of rule preforms do not overlap each other, {apex(left(r)): 

rφ, φW} is a partition of jungle c. Furthermore be notified that a characteristically feature of 

PRNS´s is that L(cWˆ)(W
-1

)ˆ is a partition of net c . We say that cWˆ is W-partition result from c. 

Observe that for each PRNS there may be several jungles, the PRNS´s of which it is an example 

of, the nets of those jungles having apexes of left sides of rule preforms of that PRNS in 

different positions. One of the important factors regarding to the partition result is the 

independence of reduction ordering  Jantzen M (1997),  partial matching Körner E, Gewalting M-O, 

Körner U, Richter A, Rodemann T (1999). 

 

     The next characterization clause 3.1 says that the necessary and sufficient condition in order 

to be the partition result of a PRNS for a rewrite object is that there is a one-to-one correlation 

between the elements of the partition of that rewrite object and the letters of the result in respect 

to the cardinality of the positions of the unoccupied arities. 

 

Proposition 3.1.  “Characterization Clause”.  Let a and b be jungles. Then 

       (i)   (  PPar(a) ) (  n { δD(α) : αenc(b), L(α)\Ξ is a singleton }∪{ δD(t) : tP } ) 

             |  ∪( p( P,t) : δD(t) = n, tP ) | ≠ | {c : | L(c)∩Ξ | = n, cenc(b), L(c)\Ξ is a singleton} | ,  
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or   (ii)  (L(a)\Ξ) ∩(L(b)\Ξ)   , 

if and only if 

             a R ˆ≠ b , whenever R  is a PRNS. 

PROOF.  Our characterization (i) liable to net placing numbers is originated from PRNS 

definition item (iii), because of  manoeuvre mightiness and arity mightiness saving feature of 

PRNS and characterization (ii) is a subject to definition item (ii).  

 

Definition 3.1.2.  SUBSTANCE and CONCEPT.  If for jungles s and t and PRNS W of s there is 

equation sWˆ= t , we say that rewrite object s is a substance of t via W, and rewrite result t is the 

concept of s via W. 

 

Lemma 3.1.  For each jungle c and each PRNS W of c 

cWˆ(W
-1

)ˆ = c 

PROOF.   Straightforward due to non-deleting rules and (iii)-condition in PRNS´s yielding the 

partition result is independent of reduction orders.  

 

“The abstraction relation” to be presented next, is needed in the process to refer to a common 

origin via PRNS between the subjects in problems to be solved and jungles presenting known 

solutions. 

 

Definition 3.1.3.  ABSTRACTION RELATION. The abstraction relation (AR) is such a binary 

relation of the pairs of jungles, where for each pair (here (s,t)) there is such substance c and 

intervening PRNS W1 and W2 , that 

               cW1ˆ= s    and   cW2ˆ= t . 

Concepts  s and t are said to be abstract sisters with each other and c is entitled a common origin for s 

and t. 

 

Theorem 3.1.  “A characterization of the abstraction relation”. Let θ be the abstraction relation, 

and a and b be two jungles. Thus 

               a θ b      δD(a) = δD(b) . 
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PROOF.   ´´: 

The proof is executed in a finite case and for nets instead of jungles, but that does not diminish the 

power of the proof. Let A1, A2, B1, B2, and B3 be such jungles that A1∪A2 is a partition of net a, and 

B1∪B2∪B3 is a partition of net b. We can construct substance c for a and b as in the following 

figures, distinguished in two different cases depending on the positions of unoccupied arities. 

     For border A 12 in the partition of net a and borders B 12 and B 23  in the partition of net b it is to 

be constructed net c and partitions for it, where 

    (i)  A´-partition: A1´∪A2´, where |A1 |́ ≥ |A1| , |A2 |́ ≥ |A2| , and there is bijection  

          fa: A1´∪A2´ ↦ A1∪A2 such that |L(a )́| ≥ |L(fa(a )́)| whenever a´ A1´∪A2 ,́ and  

   (ii)  B -́partition: B1´∪B2´∪B3 ,́ where |B1 |́ ≥ |B1| , |B2 |́ ≥ |B2| and |B3 |́ ≥ |B3| , and there is bijection  

          fb: B1´∪B2´∪B3  ́↦ B1∪B2∪B3 such that |L(b´)| ≥ |L(fb(b´))| whenever  

          b´ B1´∪B2´∪B3 ,́ and  

   (iii) border A 12  ́“ a subset of the set of the linkages of the nets in B2´ “ and borders B 12  ́and  

             B 23  ́“ a subset of the set of the linkages of the nets in A´-partitions “ fulfil the equations: 

          |A 12 |́ = |A 12| , |B 12 |́ = |B 12| , |B 23 |́ = |B 23| , and 

   (iv) 1 , 1  ́and 2 , 2  ́are sets of unoccupied arities positioned as shown in cases 1°  and 2°. 

 

Straightforwardly we thus can construct PRNS Wa and Wb of net c such that   

     A1  ́Waˆ= A1 , A2  ́Waˆ= A2 , B1  ́Wbˆ= B1 ,  B2  ́Wbˆ= B2  and  B3  ́Wbˆ= B3 . 

 

Case 1°  The unoccupied arities are in neighbouring elements in a partition of net b.  

Case 2° The unoccupied arities are in such elements of a partition of net b which are totally 

isolated from each other.  

 

PROOF.   ´´:  

Let us in contradiction suppose δD(a)  δD(b). If c is a substance for net a, we have δD(c) = δD(a), 

because the PRNS between a and c is arity mightiness saving, and from the same reason we are 
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not able to get any concept to c with the cardinality of the unoccupied arities differing from that 

cardinality of c. Therefore (a,b)θ.   

 

Corollary 3.1.1.  Any substance and any of its concepts are in the abstraction relation with each 

other.  

PROOF.  Any substance and its concepts have the same amount of unoccupied arities, because 

intervening PRNS´s are arity mightiness saving.   

 

Corollary 3.1.2.  The abstraction relation is an equivalence relation. 

PROOF.   Theorem 3.1.   

 

 

 

3.2.                          Altering RNS 

 

 

“Macros” treated in this chapter are needed in process to get solutions for elements in the subject 

of the problem in study via known solutions in memories for problems the subject consisting 

nets with other elements than in the original subject. 

 

Theorem 3.2.  “Altering macro RNS-theorem”.  Let R  be a RNS, nonconditional for the sake of 

simplicity, let t be an arbitrary jungle and W a nonconditional PRNS of t. Then there is such 

RNS RW  and such a PRNS Wo of  tR ˆ that there is in force an implicit equation of first order 

for unknown RWˆ, where RW is a composer for a linear composition of R ˆ:  

                t WˆRWˆ(Wo
-1

)ˆ =  t R ˆ . 

We can also solve unknown RNS R   from the explicit equation above for R ˆ with suitable 

PRNS Wo of  t R ˆ, if PRNS W and RNS RW are given. 

 

PROOF.  Without loosing of generality we present the proof keeping nets as rewrite objects 

instead of jungles. 
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1°    First we prove the implicit equation. 

 

Let t be an arbitrary net and W be a nonconditional PRNS and R   an arbitrary nonconditional 

RNS. Let I be such an injection that joins an index element to each rule preforms of any rule, 

such that  φ  = {ai→Bi : iI(φ)}, whenever  φR . Let us next construct required RW , a rule 

number altering macro RNS for R  in regard to W, (thus R  being entitled as one of the micro 

RNS´s of RW).  

      We denote jungle Go(t,W) = (L(tWˆ))(W
-1

)ˆ. Hereby on the basis of lemma 3.1.3 we achieve 

Go(t,W)⋓s  Par(s), whenever senc(t). Let us consider rule preform ai Bi , iI(φ),  R  . 

Let ci be the context of a representative in [t] for apex(ai). Next for each iI(φ) we define  

Qi = {gGo(t,W) : g⋓apex(ai)   , g⋓apex(ci)  }. For each i∪I(R ) and each qiQi we 

construct a PRNS of qi⋓apex(ai), say Pqiai
 , and a PRNS of qi⋓apex(ci), say Pqici

. Next we define 

the set of conditional demands Coa(W) = “for each i∪I(R ) and each qiQi  Pqiai
 is applied only 

for qi⋓apex(ai) and the application order is: first Pqiai
 then W “ . We define PRNS  

     Woa = ∪( Pqiai
∪W : i∪I(R ), qiQi , Coa(W) ).  

Now let dqi
 be such a representative of such a net class that (qi⋓apex(ai))Pqiai

ˆ is the context of 

the dqi
 for (qi⋓apex(ci))Pqici

ˆ. Let Pbi
 be a PRNS of bi , i∪I(R ), and 

     Cob(W) = “for each i∪I(R ) and each biBi  Pbi
 is applied exclusively for bi in the position 

where rule preform aibi has transformed it and the application order is: first Pbi
 then W “   

be a set of conditional demands. Let us define PRNS  

     Woc = ∪( Pqici
∪W : i∪I(R ), qiQi , Coc(W) ), where  

     Coc(W) = “for each i∪I(R ) and each qiQi  Pqici
 is applied only for q⋓apex(ci) and the 

application order is: first Pqici
 then W “ 

is a set of conditional demands. Further we define PRNS Wo = ∪( Pbi
∪Pqici

∪W : i∪I(R ), 

Cob(W), Coc(W) ). Now we can give for the first rule preform application desired RNS  
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     R iWo
 = {qiWˆdqi , apex(ai)Woaˆ{apex(bi)Pbi

ˆ: biBi} : qiQi}, i∪I(R ).  

Now we obtain  

      t WˆR iWo
ˆ(Wo

-1
)ˆ =  t (ai Bi ) , i∪I(R ), because Pbi

ˆ, i∪I(R ), are manoeuvre 

mightiness saving. In the next phase we continue the process for net t WˆR iWo
ˆ(Wo

-1
)ˆ and  

obtain  t WˆR iWo
ˆ(Wo

-1
)ˆWoˆR jW1

ˆ(W1
-1

)ˆ =  t (ai Bi ) (aj Bj ), where i,j∪I(R ), and  

R jW1
 and W1 are constructed for net t WˆR iWo

ˆ(Wo
-1

)ˆ analogously with R iWo
 and Wo for t. 

The continuation of that process concludes our proof for the implicit part of the theory.   

 

2°    Now we are ready to move to prove the explicit interpretation of our equation. Let us 

denote φ = {αi→Bi : iI(φ)}, whenever φRW. Now we have W and RW given. For each 

i∪I(RW ) let Pi
 be such a PRNS via which each iBi  is a concept. We construct a set of 

conditional demands Co(W) = “for each i∪I(RW) and each iBi  Pi is applied exclusively for 

i in the position where rule preform αi→i has transformed it and the application order is: first 

Pi
 then W.  Further we define PRNS Wo = ∪( Pi

∪W : i∪I(RW ), Co(W) ), and give  

R i = {i(W
-1

)ˆ {i(Pi

-1
)ˆ: iBi}}. Now we can proceed as  in 1°.   

 

It is worthy to observe that any macro/micro depend only on its micros/macros respectively and 

on the intervening PRNS´s, but not on the rewrite objects which might contain large number or 

even unlimited number of places for redexes of rules in micros.  

 

 

 

3.3. Parallel Process and the Closure of Abstract Languages 

 

Definition 3.3.1.  Let I be an arbitrary set and for each  i,jI  let θij be the abstraction  relation, 

and  let  

     θ  = ∏(θij : (i,j)I), thus θ -associated languages is called I-abstract language. 
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Definition 3.3.2.  MACRO and MICRO TD.  Let R be a set of RNS´s and R  a TD over R

(here singleton set of RNS´s and its element are equalized). We define a macro TD of R  in regard 

to set W of interacting PRNS´s, denoted R W , for which R W = R (R ←RW : R R , WW ), 

where RW is a macro RNS for R  in regard to W. We say that R  is a micro TD of R W , and 

denote it (R  W)W -1 . 

 

The following ”parallel”-theorem, one of the direct consequences from “altering macro RNS”-

theorem, describes the invariability of the abstraction relation or the closures of abstract 

languages in class transformation relations, and taking advantage of the equation of “altering 

macro RNS”-theorem it gives TD-solutions for any problem each mother net of the subject of 

the problem is an abstract sister to a net which is a mother net of the subject of a problem TD-

solutions of which are known. Cf. class rewriting or confluence modulo Jantzen M (1997), or TD with 

possibly freely chosen rules in RNS´s as action cf. simulation (Baeten JCM, Basten T (2001); van 

Glabbeek RJ (2001)), bisimilarity Aceto L, Fokkink WJ, Verhoef C (2001). It is worth to mention 

that there is close connections to game theories, inferring winning game graphs Thomas W (1997), 

bisimulation equivalence Burkart O, Caucal D, Moller F, Steffen B (2001), representation changes, 

abstraction and reformulation in artificial intelligence (Zucker J-D (2003); Holte RC, Choueiry 

BY (2003)).  

 

Theorem 3.3.  “ Parallel theorem ” . Let R   be a RNS, θ the abstraction relation, a and b two 

such jungles that aθb, Wa and Wb two PRNS´s of such net c that a is a concept of c via Wa and b 

a concept of c via Wb . Then we have a valid confluence condition regarding θ as follows: 

     1°  a R  ˆ  θ  b(R Wa
-1)Wb

ˆ ,  

and 

     2°  a R Wa
ˆ θ  bR Wb

ˆ.  

We call R  and (R Wa
-1)Wb

 parallel with each other, and on the other hand consequently R Wa
 and 

R Wb
 are also parallel with each other, pairwise preserving  θ-classes in derivations.   
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3.4.                   Abstract Algebras 

 

 

Lemma 3.4.1.  All nets in any denumerable class of the abstraction relation have the shared 

substance (the centre of that class). 

 

PROOF.  Let θ be the abstraction relation and let H be a denumerable θ-class. Each substance and 

its concepts are in the same θ-class in according to corollary 3.1.1. Because H is an equivalence 

class being due to corollary 3.1.2, all substances in H are in θ-relation with each other. Repeating 

the reasoning above for substances of substances and presuming that H is denumerable we will 

finally obtain the claim of the lemma.  

 

Lemma 3.4.2.  Let θ be the abstraction relation. Furthermore let R   be a RNS, and let Q be a 

distinctive denumerable θ-class with c being its centre. In addition we define a set of macro 

TD´s: 

                  R = { R W*: W is a PRNS of c }. 

Therefore 

              ∪(Q R θ) = c(R  ˆ∪ I )θ , where I is a trivial TD.     

 

PROOF.  Because Q is distinctive, for each PRNS W of c  R W has redexes exactly in one net of 

Q and the other nets in Q are in IRR(R W), our Parallel theorem yields QR W* ⊆ c(R  ˆ∪ I )θ. 

Because θ is an equivalence relation, we get QR W* θ = c(R  ˆ∪ I )θ and further  

QR = c(R  ˆ∪ I )θ.  

 

Theorem 3.4.  “Abstraction closure-theorem”.  

Let  A be the set of the denumerable θ-classes, R  is a set of  RNS´s and 

        =  ∪( { R W* : W is a PRNS of c } : R  R   , c is the centre of Q, QA ) 

be a union of macro TD´s liable to A-classes. Then if θ is the distinctive abstraction relation, pair 

(A,  ) is an algebra, named abstract algebra or net class rewriting algebra. 
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PROOF.  Lemma 3.4.2 yields our claim, because our presumption for the abstraction relation 

yields each macro TD set { R W* : W is a PRNS of c } in  is matching exactly one -class, and 

because the construction of macro yields for each center c of A equation 

|cWˆR Wˆ| = |c R ˆ| and therefore consequently for each (QA)  Q  is denumerable.   

 

Corollary 3.4.  Parallel and Abstraction closure theorems are valid also in cases where the micro 

RNS is actually a general TD over a set of them and the intervening PRNS is a TD over a set of 

them as set in definition 3.3.2 (micro - macro TD). 

 

In the next chapter we generalize the idea of PRNS to CRNS, “the cover RNS” where left sides 

of rule preforms are allowed to match apexes of right sides, and we study how nets are changed 

under TD´s over CRNS´s, and afterwards turned to be expressed by TD´s over PRNS´s of those 

rewrite objects. CRNS´s are important in expanding processes to search existing solutions in 

memory, the subjects of which being in the abstraction relation with the subject of the problem 

given to be solved. 

 

 

 

4. §   Type wise Problem Solving Regarding to Intervening RNŚ s 

 

 

 4.1.                                Cover RNS 

 

In the following we are searching solutions for problems the mother nets having been built up by 

certain type of parts (elements in covers), this requirement is embedded in cover RNS´s, 

devoting CRNS as an abbreviation for that particular type of RNS. The apexes of the left sides 

of the rules in RNS´s in known TD (e.g. the catenation closure of RNS´s) may not be elements 

in any partition of the mother net of the problem studied, but in some more general cover. 

Furthermore we expand studies of RNS´s possessing multidimensional rules (G-RNS). The 

relations between PRNS and GCRNS are especially in focus. We construct generalized 
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macro/micro (GMA/GMI) TD for GCRNS. Abstraction relation θ is then defined as before 

except PRNS is replaced with different variations of GCRNS. 

 

Definition 4.1.1.  For each relation λ we define relation RNS of  λ, RNS(λ), such that  

RNS(λ) = {s→T : sDom(λ), T = sλ}. 

 

Notice that in general there is in force equation (RNS(λ))
-1

 = RNS(λ
-1

). 

  

Definition 4.1.2.  COVER RNS.  RNS R   is a cover RNS (CRNS) of jungle s, if  

it fulfils conditions (i)-(v): 

     (i)   R  is manoeuvre mightiness and arity mightiness saving, not instance sensitive, 

     (ii)   L(apex(∪(right(R  ))))\Ξ and set L(s) are distinct with each other, 

     (iii) There is such jungle s´ for which s⊆enc(s´ ) and 

             C(R ) ⊇ {L(s´ )∩L(s´R ˆ) = } (totally changing the ranked letters of  s) and  

             each rule preform of R   has a redex in s´, 

     (iv)  {(left(r),right(r)) : rω, ωR } is an injection, 

     (v)   the right side of each rule preform of R   is a singleton.   

 

Be notified that s itself may not possess any redex for CRNS. The set of all CRNS´s of jungle s 

is denoted CRNS(s). Observe that PRNS´s are examples of CRNS´s. We say that sR ˆ is  

R -cover result for s. 

 

Proposition 4.1.1.  “Characterization Clause”.  Let a and b be two distinct jungles. Then 

               δD(a) = δD(b)    there is such CRNS R   that aR ˆ= b. 

 

PROOF.  ´´: CRNS is arity mightiness and manoeuvre mightiness saving, and therefore in the 

rewrite objects for CRNS the cardinality of the set of the outward linkage connections of the 

redexes is not changing in derivations. 

PROOF.  ´´: Choose R  = {a→b}.   

 



 54 

Next we concentrate to make notions adequate to differentiate PRNS and CRNS. 

 

Clearly CRNS is a genuine generalization of PRNS, because PRNS´s do not allow ranked letter 

mightiness increase and redexes are limited to inside of rewrite objects and genuine overlapping 

between left and right sides of the rules are excluded.  

     Because a CRNS rule may have more than one ranked letter in the right side with e.g. 

different number of inside links within the right side than in the left side, then the family of the 

unoccupied arity sets of the ranked letters in a rewrite result may deviate from the family of the 

unoccupied arity set of any partition of the corresponding rewrite object and therefore a CRNS 

result may not be derived from the same rewrite object by any PRNS. 

 

Proposition 3.1 and the greater expansive nature of CRNS compared to PRNS raise the question: 

For which jungle a and CRNS R  of it there is such PRNS W of a that aR ˆ=  aWˆ?  The next 

proposition gives an answer. 

 

Proposition. 4.1.2.  Let t be an arbitrary jungle. Let R  be a left-right distinct CRNS of t (that is: for 

each rule preform r apex(left(r)) and apex(right(r)) are distinct from each other), and for each  

rule preform r  in R  let 

( PPar(apex(left(r)))) (n{δD(α) : αenc(apex(right(r))), L(α)\Ξ is a singleton}∪{δD(t) : tP}) 

|  ∪(p( P,t) : δD(t) = n, tP)| = | {c : | L(c)∩Ξ | = n, cenc(apex(right(r))),L(apex(right(r)))\Ξ is a singleton}| . 

Hence there is such PRNS W  that  tR ˆ= tW .̂ 

 

PROOF.  We apply characterization proposition 3.1 upon the pairs of the left-right sides of the 

rule preforms in R. Being due to our presumptions for the rules of R  proposition 3.1 yields that  

for each rule preform r in R   there is such PRNS Wr that apex(right(r)) is Wr-partition result for 

apex(left(r)), furthermore we require that all sets L(right(Wr)), rω, ωR , are distinct from 

each other. By choosing W = ∪(Wr : rω, ωR , C ={C(Wr): rω, ωR }) we´ll get a desired 

PRNS, because R  is left-right distinct (apex(left(R )) being a subset of a partition of t).   
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In the following definition by generalization we give new types of RNS´s relating to the types of 

PRNS and CRNS. 

 

Definition 4.1.3.  GPRNS and GCRNS. GPRNS is RNS which is defined as PRNS but the 

condition “manoeuvre mightiness saving” is replaced with demand “not manoeuvre deleting and 

the right sides of the rule preforms are allowed to be also jungles instead of only nets”, and 

GCRNS is RNS which is defined as CRNS with the above replacement. 

     Clearly we can generalize theorem 3.2 to be valid also for GPRNS in addition to PRNS. 

 

Proposition 4.1.3.  Let R  be a GCRNS of jungle a. If the right sides of the rule preforms among 

the rules in R  are distinct from each other (we say R  is distinct from right sides) (reserving the 

symbols CdRNS for CRNS and GCdRNS for GCRNS in this respect), then 

              aR ˆR   
-1ˆ= a.  

If R  is not distinct from right sides, then we have  a ⊆ aR ˆR   
-1ˆ. 

 

PROOF.  GCdRNS is not manoeuvre deleting and is totally changing the ranked letters in rewrite 

objects (condition (iii) in the definition of CRNS).  

 

Next in the following chapter we prove “Altering Macro RNS”-theorem 3.2 generalized to deal 

also with the wider intervening RNS-type, cross colouring RNS, and in order to extend problem 

solving to fit also to that intervening type, a characterization of abstraction relation regarding 

that type is introduced. 
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4.2.         Generalizing Altering Macro RNS Theorem  

 

Before going to the next theorem we widen notion CRNS embedding it into general RNS´s at 

overlapping sections between left and right sides of rule preforms. 

 

Definition 4.2.1.  CROSS COLOURING RNS, CLCRNS. Let W be a RNS. For each net r we 

define relations OLr from pairs (s,R ) to nets, where s is a rule preform in W and R   is a 

GCdRNS recursively: 

OLr(s,R s) = ∪((apex(left(s))⋓apex(r))R sˆ), 

OLr(t,R t) = ∪((apex(left(t))⋓OLr(s,R s))R tˆ). 

Notice that OLr may not be any mapping due to its potentiality to possess multi-images. We say 

that W is a cross colouring RNS in respect to net  r, CLRNS(r), if OLr(t, R t) is an enclosement of 

apex(right(t)), whenever apex(left(t))⋓OLr(s,R s)   for some s (OLr(t, R t) thus entitled a 

coloured jungle whereas R t is a colouring GCdRNS of W in respect to r). If there is such a r-

embedding net t that PI(∪(apex(left(W)))⋓t)  Par(t), we say that CLRNS(r) W is total. 

 

Definition 4.2.2.  MACRO AND MICRO IN REGARD TO GPRNS AND CLRNS.  

Let R   be a RNS and W a nonconditional RNS of type T, T{GPRNS,CLRNS}. If there is such 

a RNS, RW , and such a nonconditional T-type RNS Wo that there is in force an implicit equation 

of first order for unknown RWˆ, thus RW being a composer for a linear composition of R ˆ:  

                 WˆRWˆ(Wo
-1

)ˆ =  R ˆ. 

we call RW a macro of R  in regard to W, indicated by MA(R ,W). Consequently we entitle R  a 

micro of RW  in regard to W, indicated by MI(R ,W). 

 

Theorem 4.2.1.  Let r be a net and R  be a RNS. Furthermore let W be a nonconditional total 

CLRNS(r) and 

aWr  = ⋓(t : renc(t), PI(∪(apex(left(W)))⋓t)  Par(t)), 
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“ the smallest r-embedding net possessing a partition of r by W ”, then such a partition of aWrWˆ, 

say P, is achieved via OLr-relations in W that PW
-1ˆ is a partition of r and we can obtain  

MI(R ,W) as well as MA. Notice that in addition in a special case where each colouring 

GCdRNS in respect to net r in W can be chosen among the set of GPRNS´s, and if P   is the set 

of those GPRNS´s, then ∪P   is a GPRNS of r. 

 

PROOF.   Analogous with altering macro theorem, the set of the colouring GCdRNS´s equating 

GPRNS´s for elements of aWr-partitions as rewrite objects.   

 

Definition 4.2.3.  MACRO AND MICRO IN REGARD TO TD OVER GPRNS´s AND CLRNS´s.  

We define macro MA and micro MI in regard to TD over GPRNS´s, respectively over CLRNS´s as 

previously in the cases over PRNS´s. Consequently we use notations MA(TD,CLRNS) and 

respectively for MI. Furthermore for each TD R  we denote 

R  +(T)  =  {R W  : the elements of W  are of type T}  and 

R −(T)  =  {(R  W)W -1 : the elements of W  are of type T },  

whenever T{GPRNS, CLRNS}. TD´s R  and (R  W)W -1  are called parallel with each other, 

denoted also parallel(R) = (R  W)W -1  or parallel((R  W)W -1  ) = R   . 

Notice that because CLRNS´s are genuine generalizations of GPRNS´s we have equations  

R  +(GPRNS) ⊂ R  +(CLRNS)   and   R −(GPRNS) ⊂ R −(CLRNS) . 

  

Theorem 4.2.1 yields the following theorem for more general cases: 

 

Theorem 4.2.2.  For each nonconditional W of type T, T{GPRNS, CLRNS}, and each string 

R  over set of RNS´s, there is R W, and such of type T  RNS Wo  that  

                             Wˆ R Wˆ (Wo
-1

)ˆ  =  R ˆ  . 
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Corollary 4.2.1.  The above theorem can be dressed also somewhat more generally: 

Let R  be a micro TD over set of RNS´s and W  a set of intervening nonconditional RNS´s of 

type T. Then there is such macro TD of R  , R  M , and such set of reversed T-type RNS´s, Wo ,  

that we have commutativity condition 

                             W ˆ R  Mˆ Wo
 
ˆ  =  R ˆ , 

and it manifestates a natural transformation between Functors determining parallel rewriting cf. 

Theorem 3.3. 

 

Definition 4.2.4.  GENERALIZED ABSTRACTION RELATION. The generalized abstraction relation in regard 

to type T of intervening RNS, denoted GAR(T), T{PRNS,GPRNS,CLRNS,GCdRNS,GCRNS}, (in 

short abstraction relation of type T ) is such a binary relation in the set of the nets, where for each pair 

(here (s,t)) there is such net c and intervening RNS W1 and W2 of type T, that 

               cW1ˆ= s    and   cW2ˆ= t . 

Nets s and t are said to be abstract sisters of type T with each other, c being a common substance of s 

and t. Notice that GAR is a genuine generalization for abstraction relation AR, and that  

AR = GAR(PRNS). 

 

Proposition 4.2.1.  “A characterization of abstraction relation GAR(CLRNS)”. 

Let a and b be two nets and let θ be GAR(CLRNS). Then 

                a θ b    δD(a) = δD(b) .  

PROOF.   Theorem 4.2.1 and characterization proposition 4.1.1.   

 

Remark 4.2. Straightforwardly widening the definition for “parallel” to deal with intervening 

RNS´s of type GPRNS and CLRNS instead of solely dealing with type PRNS, we clearly have the 

results for GAR(CLRNS) as is obtained for AR in corollaries 3.1.1 and 3.1.2, result 3.1, parallel-

theorem, lemmas 3.4.1 and 3.4.2 and theorem 3.4 and finally consequently results concerning 

generalizations for TD´s as stated in Corollary 3.4. 

 

Proposition 4.2.2. “Characterization of GAR”.  

Let T{PRNS,GPRNS,CLRNS,GCdRNS,GCRNS} and let s and t be nets. Then s and t are 

abstract sisters of type T, if and only if there exist such intervening RNS Vs and Vt of type T that 
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            ( AsPar(s(Vs
-1

)ˆ)) and ( AtPar(t(Vt
-1

)ˆ))  there is a bijection between As and At . 

 

PROOF.  The right sides of rule preforms must pair wise in both of the intervening RNS´s possess 

the same number of different manoeuvre letters liable to cardinality of the bijection between the 

related partitions.                                                                           

 

Definition 4.2.5.  CONGRUENCE.  Let θ be a relation in the set of the jungles. We say that θ is a 

congruent relation of TD- type T, if there is in force: 

               a θ b      aφa θ bφb   whenever φa and φb  are TD´s of type T. 

Each congruent relation of type T, which is an equivalence relation, is entitled congruence relation of 

type T. The set of all congruence relations of type T is denoted Cg(T). 

 

Theorem 4.2.3.  For each TD-type Tm GAR(Tm)Cg(Tn), m ≥ n, m, n = 1,2,3, where  

(T1,T2,T3) = (PRNS,GPRNS,CLRNS).  

PROOF.   GAR(T) is congruent, because any catenation of TD´s is of the same type as the TD of 

the most general type in that catenation and Tm is a generalization of Tn , if m ≥ n. Proposition 

4.2.1 yields the equivalence requirement.  

 

SYNTAX OF AUTOMATED PROBLEM SOLVING SYSTEM.  

The mother net of a given problem is first transformed by an intervening CLRNS to concept net 

for which we construct an abstract sister, one of the substances of which has a partition in a 

bijection with a partition of a substance of the said concept net. Now the known transducer 

renders possibility to construct a macro for it, the parallel counterpart and finally a micro parallel 

macro, because the reached concepts guarantee the survival of information of the rules in known 

TD´s in the process. By iteration we can reach for our original problem a presolution, which 

finally is a desired solution, if the product is in the anticipated language fulfilling the set of limit 

demands. 

     Directly searching a common substance of certain type for a net pair would be substantially 

more difficult if even impossible than going through pair (macro,parallel macro) in a case where 

either of the nets in said pair is undenumerable regarding to the cardinalities of the sets of their 

letters (and actually even if the cardinality of one of them is immense although denumerable). 
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Conclusions 

 

The present study represents a new way to describe knowledge with generalized universal 

algebra allowing loop structures so very important in AI languages and which gives an extensive 

variety of notional relations between net entities without restricting the semantic use. 

Consequently a new syntax model for solving problems defined by said nets is established 

flexibly utilizing notional similarities with original problems to further match solutions in 

memory data banks additionally creating transducer graphs of solving rewrite systems and 

thereof closure system of solving classes. 

 

 

For the future considerations 

 

Conceptual graphs constitute equivalence classes as the form of elements in a closed quotient 

systems, meaning that parallel transformation applied to those classes inevitably drops images 

back into the set of those particular classes, which guarantees automated problem solving and 

consequently is in the interest of this research. For the reason of “memory hunting” it might be 

worthwhile to consider continuing the process of abstract net pair forming in the chain formation 

by intervening rewriting then asking if this kind of “catenation strings” form elements in some 

closed system. Furthermore type wise use of normal forms in renetting (especially creating new 

links by right side substitutions) raises a promising question of the types of the quotient closure 

itself. 
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