Algebraic Net Class Rewriting Systems,
Syntax and Semantics for Knowledge Representation
and Automated Problem Solving

Seppo llari Tirri

PhD (ICT) student, Information & Communication Technology
Asia e University (AeU), Malaysia
Jalan Sultan Sulaiman, 50000 Kuala Lumpur, Malaysia

seppo.tirri@aeu.edu.my

Keywords: Universal algebra, Formal languages, Homomorphism, Rewriting Systems,
Artificial intelligence, Automata.

ABSTRACT

The intention of the present study is to establish general framework for automated problem
solving by approaching the task universal algebraically introducing knowledge as realizations of
generalized free algebra based nets, graphs with gluing forms connecting in- and out-edges to
nodes. Nets are caused to undergo transformations in conceptual level by type wise
differentiated intervening net rewriting systems dispersing problems to abstract parts, matching
being determined by substitution relations. Achieved sets of conceptual nets constitute congruent
classes. New results are obtained within construction of problem solving systems where solution
algorithms are derived parallel with other candidates applied to the same net classes. By
applying parallel transducer paths consisting of net rewriting systems to net classes congruent
quotient algebras are established and the manifested class rewriting comprises all solution
candidates whenever produced nets are in anticipated languages liable to acceptance of net
automata.

INTRODUCTION

MOTIVATION

In all fields of data processing, especially in robotics, physics and overall changing constructions
is ever increasing need for knowledge of common structures in creating fast, exact, controllable
and sufficiently comprehensive solving algorithms for problems. From René Descartes freely
quoted: “there is not very much in results or even in the proofs of them, but the method how they
are invented, that is what is the process inventors use to realize proofs”. Restricting data flow to
finite cases is often in descriptive models improper in order to get sufficient model to handle
with the tasks, e.g. if variables are allowed to be systems themselves as in function
representatives of quantum particles. Models in meteorology and models for handling with
populations, biological organizations or even combinations in genetic codes call for common
approach in problem solving especially in cases where in- or out- data flow volumes are
beforehand impossible to predict to be limited in the already known sphere. For connections
between neurons in brains, and in more theoretical aspects for allowance of simultaneous
“loops”, nets are ideal as formal representations for iterations as e.g. within solutions for powers
of higher order differential equations by Picard successive iterants. In robotics strong Al, the
abstract mathematical reasoning model, will play the key element in handling data processes in
artefacts. In the 1980s in Japan were the first concrete steps taken in robotics trying to imitate
human actions; however imitating process is the endless effort to achieve inventiveness which
lays its solid ground in the understanding of reasoning itself, thus strong Al is a more effective
approach. Infinite ranks (the mightiness or cardinality of in- or out places in operation relations)
are needed as tools for infinite simultaneous data flow into systems (operations) such as in
quantum physics where infinite number of different state function solutions of a Schrédinger-
equation compounds a field to be operated. Naturally one can imagine numerous other fields
where a mathematical framework for problem solving would be desirable. Within solving any
problem an essential thing is to see over details, and one inevitably confronts the necessity of
outlining or abstracting the object to be solved to already more familiar forms or to forms easier
to be checked — keeping the number of links regarding the environment of the object in hands
unchanged (e.g. to be the most comprehensive, the handled data flow would not be allowed to be
restricted solely to beforehand computably predictable form).

USED TOOLS

The notion of net is introduced as the formal representative for comprehensive idea of
information. In order to define comprehensive, mathematically sustaining definition for the
conceptual problems we use pairs comprising problem objects and recognizers, where those
object concerned are nets, namely graphs (allowing loop structures) where vertices (nodes) are
ranked letters glued by arity letters to each other at their arity places in the procedure: in to out
and out to in. Recognizers can choose to be any netmorphism or even rewriting systems or
transducers (graph-like formations the nodes replaced by rewriting systems).

To avoid beforehand unnecessarily restricting unpredictable data to include in problem objects
we choose to use infinite formulation in object definition, that means allowing unlimited number
of in- and output places to be occupied in nets. Hence the used exposure for objects comprises
models for phenomena crucially vulnerable to unpredictable data flow.

Therefore we introduce three types of alphabets (sets of letters or signature) distinct from each
other: frontier alphabet (the letters called variables), ranked alphabet (the letters called operators)
and arity alphabet (of arity letters) divided in in-arity and out-arity alphabets, distinct from each
other. The distinction for in- and out-arities is needed to divide the data flow direction in
operations.

Realization (valuation) of nodes shifts the ranked letters (operators) to operations (relations:
deterministic or undeterministic (with many valued) functions) which are operational in a
desired algebra considering the practice at hand. In the special case of terms the operators can be
regarded as free algebra operations. Realizations are defined so that the coming (in upstream)
node operators are allowed to influence to the images of the node operations concerned. That is
essential in loop structures.

Equations and decompositions are presented in the most general course for the purpose of
closure properties in the realm of net classes, following systematically chosen way to dress
information to suit to nets and accordingly to transducers.

METHOD AND TARGET

Various operations among nets are presented as well as rewriting systems, essential to
comprehend used derivations. E.g. solving equation groups by the replacing method falls into
partition structures.

The notion of inventiveness is probed: Comprehensive general exact solving method and its
characteristic features especially in quotient systems obtained by partition or more generally by
cover rewriting systems (a generalization for the idea of partition, consisting of the depth
dimension of conceptual rewriting liable to allow left and right sides of rules intersect with each
other) are targeted. We use parallel rewriting, commuting rectangles and iterations and in the
cases of prerequisites related to limit demands, check results by quotient automata where the
final states are sets of class elements. Systems have resemblances with confluence properties
within classes and natural transformation between Functors demonstrating parallel algebras.

Rewriting systems will be classified type wise, comprising also the possibility to use the left
and on the other hand distinctively the right substitutions. By right side substitution relations
new links can be created from the applicable object to unoccupied in- or output places in the
particular object itself. Hence we can in some cases avoid using infinite number of rewrite rules.
Class characterizations are given to ease the burden of formatting abstract pairs.

OVERALL SUMMATION OF WORKING ORDER

The present work is offering an explicit model for the representation of knowledge itself, not
only implicit often seen in graph definitions and graph rewriting. Furthermore we deliver
explicit syntax for automated problem solving.

The work is basing itself on a generalization and transformation to universal algebraic net
configuration with new realization definition and renetting types on. First we present necessary
preliminary definitions for the construction of nets the nodes of which have arbitrary number of
in- and outputs. Realizations of nets are defined by transformations from operators to operations
in algebras. Then we give the type wise representation for renetting systems and transducers, the
node realizations of which being rewriting systems. The necessary consideration is given to
definitions for generalized equations for closure properties in net class rewriting. The definition
of problem and its solution is introduced in terms of nets, recognisability and transducers
fulfilling limit demands. Then the partition of nets and the abstraction relation between concept
nets are introduced yielding net classes, needed in searching the fitting partial solutions from
memory.

“Altering macro renetting system”-theorem is introducing the necessary equation matching
each step of the solution process between the substances of the nets in jungles. Parallel theorem
establishes the invariability of the abstraction relation and also the construction for necessary
algorithms for abstract sisters subject to net class rewriting algebra. The construction process of
the desired transducer for the jungles in given problems to be solved is thus obtained from the
known ones in iteratively updated memory. Finally we present the extension of the rules of
solving transducers, in the cases where covers of mother nets in problems differ from partitions,
where cover renetting systems are defined as generalizations of partition ones, and notion
partition of jungle is replaced by concept of cover renetting result consisting of sequential parts
of cover in depth dimension, partly replaced by each other.

1.8 Preliminaries

This work follows the general custom of the discipline in concern and only neccessary symbol
definitions are manifested, readers are encouraged to turn to the literature represented in the

reference list for the more comprehensive guidance.

1.1. Sets and Relations

We agree that all defined terms are of the cursive style when represented first time.
Definition 1.1.01. We regularly use small letters for elements and capital letters for sets and
when necessary bolded capital letters for families of sets. The new defined terms are underlined

when represented the first time.

Definition 1.1.02. We use the following convenient symbols for arbitrary element a and set A in

the meaning:

aeA “ais an element of A or belongsto Aorisin A”
agA “a does not belong to A~

Jae A “there is such an element a in A that ”

daeA “thereis exactly one element ain A ™

Aae A “there exists none element ain A

Vae A “for each a belonging to A ”
= “then it follows that

= “ifand only if , shortly ““ iff ”

Definition 1.1.03. {a: *} or (a : *) means a conditional Set, the set of all such a-elements which
fulfil each condition in sample * of conditions, and nonconditional, if sample * does not contain

any condition concerning a-elements.

Definition 1.1.04. <& means empty set, the set with no elements. A set of sets is called a fanily.
For set § the notation {a; : 1 € S} is an indexed set (Over S). Set {a; : i € S} is {a}, if aj = a
whenever i € . If there is no danger of confusion we identify a set of one element, siugleton, with

its element. It is noticeable that {<J} is a singleton set.

Definition 1.1.05. For arbitrary sets A and B we use the notations:

AcCBor B2 A “Aisa subset of B (is a part of B or each element of A is in B) or B includes A
AZB “ A is not a part of B (or there is an element in A which is not in B)”

ACBorBDA “Aisagenune subsetof B” meaning “AcB and (3beB) bg A”

AZB “ A 1s not a genuine subset of B ”

A=B “ A 1s not the same as B “

A° or 7 A ““is the complement of A meaning set {a : agA}

AUB “ the union of A and B” meaning set {a: acA or acB}

ANB “the ntersection of A and B~ meaning set {a:acA,aecB}. [fANB =, we

say that A and B are diszinct With each other, or outside each other.

A\ B “ A excluding B ” meaning {a:acA, agB}.

Definition 1.1.06. The cardinality of A, “the number” of the elements in set A, is denoted by |Al.

Definition 1.1.07. P(A) symbolizes the family of all subsets of set A.

Definition 1.1.08. The set of natural numbers {1,2,...} is denoted by symbol IN, and INy = IN

U{0}. Maximum of the numbers in subset A of INy is denoted maxA.

Definition 1.1.9. Notice that for sets A; and A, and samples of conditions *; and *,
{a:aecA;, "1} c{a:acA,, %} ,

if (AlgAz and *;1 =%,) or (A1: A, and *, € *1).

Definition 1.1.10. The notation U(A : i€S) is the union {a : (31 € S) acAi} and
N(A : 1€9) is the intersection {a : (VieS) acAi}.

for indexed family {A; : i€ S}. For any family 8 we define:
UB =U(B :Bea)

N% =N(B:Bea).

Definition 1.1.11. Set p of ordered pairs (a,b) is a binary relation (Shortly relation), where a is a p-
preimage of b and b is a p-image Of a. The first element of pairs in relations is entitled preimages.
Dom(p) = {a: (a,b)ep} is the domain (set) of p (p is over Dom(p)), and S(p) = {b: (a,b)ep} is its
image (set). Instead of (a,b) ep we often use the notation apb. We also say that p zs giving b from a. 1f
the image set for each element of a domain set is a singleton, the concerning binary relation is
called a mapping. For the relations the postfix notation is the basic presumption (b = ap);
exceptions are relations with some long expressions in domain set or if we want to point out

domain elements, and especially for mappings we use prefix notations (b = pa) or for the sake of

clarity b = p(a), if needed. We define p:A— B, when we want to indicate that A = Dom(p) and B
2 &Ap), and ApB, if (a,b)ep whenever ac A and beB. We also denote Ap = {ap:acA}. When

defining mapping p, we can also use the notation p:a—b, acA and beB. If A 2 B, we say that

p is a relation in A. When for p:A— B we want to restrict Dom(p) to its subset C we denote p|C ,
the restricted mapping of p to C for which Pc™ pN{(c,b): ceC,beB}.

Set {b: apb} is called the p-cuss of a. Let p:A—B be a binary relation. We say that A'(SA) is

closed under p, if A'p < A

For each binary relations a, y and n we define a.(y,n) = {(ay,bn) : (a,b)ea}.

For set ® of relations we denote a® = {ar: reR}, AR = {ar: acA, reR}. If p(A)
(={p(a): acA}) is B, we call p a sujection. If [p(x) = p(y) & x =y], we call p mjection. If p is
surjection and injection, we say that it is bzection. If p(x) = x whenever xeDom(p), we say that p

IS an identity mapping (denoted Id). The element which is an object for the application of a

relation is called an applicant.

For relations p and ¢ and set R of relations we define:
the catenation po = {(a,c): Ibe(Dom(c)NSp)) (a,b)ep, (b,c)ec},
the inverse p* = {(b,a): (a,b)ep},
Rt = {pt: peR}.
Let 0 be a binary relation in set A. We say that
0 is reflexcive, If (VaeA) (a,a)€0,

. L. -1
0 1s inversive, if 0 ~<0,

0 is transitive, if 89S0,
0 is associative, it (aBb)Bc = ab(bOc),
0 is an equivalence relation, if it is reflexive, inversive and transitive. If we want to
emphasize the domain, say A, where 0 is relation, we denote 6 € Eq(A).
For sets A and B we define
|Al =Bl , if there is such injection a that a(A)=B ,
|Al < |BI, if there is such injection a that a(A)CB ,

IAI<IBI, if Al =Bl or |Al < BlI.

Set A iS denumerable, 1f it is finite or there exists a bijection: IN — A; otherwise it is undenumerable.

Definition 1.1.12. CARTESIAN POWER. Let § be a set of index elements and let {A;: i€ S} be

an S-indexed family (an index element (shortly index) is incorporated in each element), and let 3 be
the set of all the bijections joining each set in the indexed family to exactly one element in that

set and indexing that element (@ indexed element) With the index element of that set it includes to.
For any element a in A; we denote index(a) = i, and on the other hand for each i<,

elem(i,{Ai: ieS}) = Ai. Family {{r(A)) : ieS}: reB} (a set of sets consisting indexed elements)
is called [S|-Cartesian power OF indexed family {A;: i€ §} and we reserve the notation TI(A;:i€9)

for it, and the elements of it are called |S|-Cartesian elements on {Ai:ieS}. The cardinality of S, |9,

is called the Cartesian number of the elements of |S|-Cartesian power. If A = A, for each i€, we
denote A°' for |§|-Cartesian power of set A, the elements called |S|-Cartesian elements of A. In the

case index set Sis IN, we denote (aj,ay,...) as the element of [IN|-Cartesian power of indexed

family A = {Ai: i€IN}, whenever a;eAq, azeAy,... . Any relation from $-Cartesian power to a

set is called a |S|-ary relation. For the number of Cartesian element @ we reserve the notation 9U(a).

For finite cases: neIN and sets Ay, Ay,...,An We define n-Cartesian power

ArxAxx.. . xAp = {(a1,a2,...,an): a1€ A1, a2€ Ay, ..., ane An},
and call (a1,8z,...,an) an n-zple. 1f S is finite, we can write n-tuple (ai,a,...,a,), where [$| = n,
instead of {a;: 1€S} and call that tuple the zpie form of the |S|-Cartesian element. If n = 0, n-
Cartesian power is . Let K be a set of index elements and let {3« : ke X} be a family of index
sets. We denote ®(II(Ai: ieS): keX) = {{r(A) : ieSk , keX}:reB}. For finite K we can write
[T(Ai: 1€5)®TI(Ai: 1€3)® ... ®TT(A: i€ Siy) instead of ®(TT(Ai: ieSk): keX).
For arbitrary Cartesian element s = {ai: i€ 5} we agree on the undressed notation of s . (s) = (ai|i€9)
instead of notation ({aj:i€3}), and in finite case (s) = (a1, az, ... , ay) instead of ((az, az, ... , &)).
For elements (a; | i€$) and (bj | je§) (ai | i€S) = (bi | i€9), iff $ = § and for each (icS) & = b;.
We say that relations between two Cartesian powers of indexed families with the same Cartesian

number preserve the indexes, If in those relations each projection of each preimage and the same

projection of its image have the same index.

Definition 1.1.13. PROJECTION. Let $and § be two arbitrary sets. We call mapping
e[s]: (S,11(A:: 1€9))—~U(LL(A:: i€9)) a projection mapping (reserving that notation for it), where

(VJ€S) projection element €[S](j,a) (shortly denoted g;) is the element indexed with j in @ (belonging
to A;). We denote simply e, if there is no danger of confusion. We say that a Cartesian element is
< another Cartesian element, if and only if each projection element of the former is in the set of
the projection elements of the latter and the Cartesian number of the former is less than of the

latter.

Definition 1.1.14. CATENATION. Let (Ai: i€S) be an indexed set. If each projection element in a

|§|-Cartesian element of IT(Ai: i€S) is written before or after another we will get an |S|-catenation

of family (Ai: i€S) or a catenation over S, and the projections of the concerning Cartesian element

are called members of the catenation. \We denote the set of all $-catenations of family (Ai: i€S) by

Cat(Ai: i€9). An associative mapping: TI(Ai: ieS) — Cat(Ai: i€S) joining an S-catenation 10 each

10

S-Cartesian element of I1(Ai: i€9) is called a catenation mapping. Notice that also pq is a catenation,
if p and g are catenations, and we say that each member of p precedes the members of g and each
member of q succeeds the members of p; thus preceding and succeeding defining catenation order
among the members of catenations. If we have a set A such that for each ieS A; = A, we speak

1§ 1

of an |S|-catenation of A and denote the set of all the |5|-catenations of A by A" . E.g. sequence

a18,...a, NelN, n > 1, is a finite catenation. For set H we define H™ (the cazenation closure of H) such
that H" = U(H"™' : 5¢=5). Any catenation of members of catenation c is called a partial catenation of c.

Such catenation d which are a catenation of partial catenations of catenation ¢ and d = c is called a
decomposition OF €. For our example, above, did;, , where d; = ai8...ai , d2 = @i+1dis2...an , IS @
decomposition of a1a;...an. Catenation operation ® between sets is defined:

A®B = {ab: acA, beB}.
If the members of a catenation closure are relations we speak of a #ansitive closure Of the set of

those relations. For set A, index set $ and set R of relations we define:

AR’ = (AR)RY , whenever i€, §=S\i and Ri=R .

Definition 1.1.15. For any symbols x and y we define replacement XYy, which means that x is
replaced with substitute y. Notation A(x—y | C) represents an object where each x occurring in A

is replaced with y with condition C; and A(x—J) is an object where x is deleted.

1.2.§ Abstract Data types

Definition 1.2.1.1. ALPHABETS. Let us introduce three types of alphabets (sets of letters)
distinct from each other: frontier alphabet (the letters called variables, often referred “terminal”),
ranked alphabet (the letters called gperators, “nonterminals”) Rozenberg G, Salomaa A, ed. (1997)

and arity alphaber (0f arity letters) divided in zz-arity and out-arity alphabets, distinct from each other.

11

The distinction for in- and out-arities is needed in dividing the data flow direction in operations.
If there is no danger of confusion symbols X and Y are reserved for frontier alphabets, symbols

> and Q are reserved for ranked alphabets and = for the union of in-arity alphabet Z;, and out-

arity alphabet Zq,.. The ranked and frontier letters are called rode Ztters , shortly nodes, if there is
no danger of confusion, and sometimes for frontier letters synonyms leaves are used. Infinite
ranks are needed as tools for infinite simultaneous data flow into systems (operations) such as in
quantum physics where infinite number of different state function solutions of a Schrodinger-

equation compounds a field to be operated.

Definition 1.2.1.2. OPERATORS. Let r be a mapping from the union of ranked, frontier and
arity alphabets to the set of the ordinals assigning to each letter y two ordinals, so called rzz4s, an
in-rank (In-rank(y)) and an out-rank (out-rank(y)).

We denote X,p = {c€X : in-rank(c) = o, out-rank(c) = B} to symbolize the set of all (a,f)-

ary operators N Z. In the special case where the in-rank of an operator of X is 0 and out-rank = 1,
is called ground letter. The in-ranks and out-ranks of frontier letters are 1, and the in-ranks and out-
ranks of arity letters are 0. In the following the letters and the operators of them are equated with
each other, if there is no danger of confusion. Cf. “signatures” (Rozenberg G, Salomaa A, ed.
(1997); Nivat M, Reynolds JC, ed. (1985); Ohlebusch E (2002)).

1.2.2 Nets

1.2.2.1 BASIC DEFINITIONS

Nets describe directed graphs, cf. model theoretical aspects in consideration of formal descriptive approach for
graphs Thomas W (1997), needed e.g. in computer algorithms and describing connections
between neurons in brains, and in more theoretical aspects allowing simultaneous “loops” nets
are ideal as formal representations for iterations as e.g. within solutions for powers of higher
order differential equations by Picard successive iterants Tirri S, Aurela AM (1989). Without
net-formation (differing considerably from trees (Ohlebusch E (2002); Denecke K, Wismat SL

(2002)) with only one out-arity) there is no way in a tree to get a return data from any realization

12

of the ranked letter looped to the tree. It is also impossible to cut connection between two parts
of one net leaving only subnet and deleting the other part. Also it is impossible to handle
simultaneous changes in out-arity connections and furthermore infinite number of out-arities on
the whole. Nets allow simultaneous algebraic structures in languages to be recognized by net
rewriting automata as would happen in adding the number of saturating term algebra congruence
relations by replacing terms with nets and homomorphism relations in tree automata by rewriting
systems in Tirri S (1990). Furthermore the results in operation-level in realizations of nets are
allowing dependences on coming up streams in carrying nets. By the semantic point of view in
process algebra here described nets are concentrating to get in- and output places (filled with
arity letters) to ranked letters cf. zkens (Best E, Devillers R, Koutny M (2001); Baeten JCM,
Basten T (2001)). Some of the preliminary ideas of nets though deviating from knowledge

representation, consequently in results, proofs and generalizations are in Tirri SI (2009).

Definition 1.2.2.1.1. NETS.
We define 2XE-#ez inductively as follows: Each letter in ZoUXUZ is a ZXE-net. The letters
with in-rank O are called ground nets.
t=o(r(&); ()| ieS, jeg)
IS & ZXE-basic net, the set of its letters L(t) = {c}U(U(L(r(Ek)): keSUS), whenever
(i) oe€Z, and S and § are such index sets distinct from each other that |S| = in-rank(oc)
and |§] = out-rank(c), and {&;: i€ S}<SEin, {&j: je§}EEout
for each (mneSUY) Em= &y, iff m=n, and
(i) S8, $o=9, and §'S5\So, §* S G\,
(iii) for each (ke SU§) oxeX and S and gk are such index sets distinct from each other and
from Sand § that |5« = in-rank(ou) and I« = out-rank(ow), and {&m: meSk}<SEin,
{&n: Ne§} SEau are such sets of arities that for each (m,ne U §) &m= &y, iff m=n, and
(iv) » is such a mapping that
(1.) for each (keS"UY)
(&) = &

13

L(r(&)) = &

where & € E, and
(2.) for each (ke SoU§o)

r(Ek) = &k,
L(7(&)) = {&, vk},

where v € XUZ,, and

(3.) for each (i€ 5\(5,US")) (A n, €§i) &n, € Eour and
r(&i) = &i&ny,0ti(om ; M [Me S, N€),
L(r(&)) = {&}UL(ci(Lm ; nn | MeSi, Nei)),
where L(ai(om ; Nn | MeSi, n€§i)) = {ai}U{om nn: MeS;, negi},
{om: meSi}s EnUXUZ, {nn: NeGi}S EoutUXU,, and

(4.) for each (je §$\($o0U§)) (A mojeffj) ﬁmo,- € Zin and
(&) = &i&my;0i(0m M | Me S, ne),
L(7(&) = {&}UL(y(vm ; nn | MES;, NE)),
where L(aj(om ; Nn | MeSj, ne§y)) = {o}U{om nn : MeS;, negi},
{om: mef}s EnUXUZ, {Nn: N€G}S Bt UXUZ.

We say that for each (keS) r(Ek) occupres arity & of o(vi; nj | i€9, je§), where
{vimj: i€9, je§} = BUXUZ,, if &eL(o(vi; nj | i€$, je§)) and r(Ek) eXUX,. Furthermore we

say that for each (ie $\(5,US")) out-arity Eny, of aii(om ; Nn | Me i, ne§i) and in-arity &; of

o(&i ,7(&n) ; (&) | heS, hti, ke§) occupy each other in t, and for each (je§\($oU§")) out-arity &;jof
o(r(&n) ; &, (&) | hes, ke§, k#j) and in-arity &moj of a(Em;j» En; | mjeS;, njeg;) occupy each
other in t. Furthermore using definitions for symbols defined above for t we define:

5= o((&), &iEniSi : r(Ea), Eimiti | PESOUS, GoUy, 1€\ (SUS), jG\ (G)

is a net, and

L©) = {0 e, JePUILE(80): keSoUS UgeUs DUULS): i€\ (U NIULE: FefNGU)

14

is the set of the letters in s,
whenever for each (ie$\(SUS"), je§\($US"))
(1.) siand t; are nets outside ZUXUZg, and
(2.) {&n: ne§ "} Eout and {Em: megi }<SEin are such sets of arities that
for each (m,ne S U§"") &Em= &, iff m=n, and
(3.) there is exactly one such index njeS;"" that &, is an unoccupied out-arity letter in s; , and
there is exactly one such index mje ;" that &m; is an unoccupied in-arity letter in t;.
We call o the oz 0f s, root(s). Net o(&; ;&j| i€S, je§) is called the ranked net.
For each net u we define and reserve for that purpose such rank index sets S5, §s , o€ L(U)N(Z\Z),

distinct from each other that 55| = in-rank(c) and |§s| = out-rank(c) and the zn-rank index set of net

n Sy = U(Ss : oel(@)N(E\Z0)) and the out-rank index set of net u Gy = U(§s : c€L(Q)N(Z\Z0)).

Uno(u) is a notation for the set of the unoccupied arity letters of u and Occ(u) is reserved for the
set of all occupied arity letters of u. Occ(A,t) means the set of all those elements in set A, which
are occupied in net t, and Uno(A,t) are reserved for the set of all those which are unoccupied in
net t. The index elements in the in-rank index set of net u for unoccupied arities in u are called
unoccupied in-arity index elements, and the index elements in the out-rank index set of net u for
unoccupied arities in u are called unoccupied out-arity index elements. The set of all unoccupied in-arity
index elements is denoted S,*, and the set of all unoccupied out-arity index elements is denoted

$u™. Symbols Sy and §,°° are reserved for the sets of occupied elements, respectively.

The set of all ZXZE-nets is denoted Fz(X,E). We also denote Fs_(X) = F(X,E)N\E,

Fx,(E) = Fe(X.E)\X and Fy,. = Fs(X,E)\(XUE) and Fy,, - = Fs(X,E)\(XUZUE).

Definition 1.2.2.1.2. TIES and SUBNET.
Now when we have reached the definition and the sense of unoccupied arities we are ready to
give a formulation for nets in accordance with previous given, more convenient later when we

are handling substitutions and rewriting. First we introduce tied sets OF tied terms (in tied and out tied)
(of nets)

IEinz(X,E) = EnU{Ev : EeBin,veXUZ}U{E E,U : & €Bin, & eB0ut, E,eUno(u), UEFZXEOE } and

15

Eoutz(X,E) = EoutU{Ev : EeBout,ve XUZo}U{E E U 1 E €Bout, E,€8in, E,eUno(u), ueFs,, - }

We denote Fy(X,Z) = Fins(X,Z) U Foux(X,Z).

The first set and its elements in the union Einz(X,E) and Eoutz(X,E) respectively are called 0-#ed
and the second set and the elements in it are 7-#ed , and finally the third set and its elements are
2-tied. For each tied element s we denote its k™ member s®, k = 1,2,3. The last member of any
tied term is called zed ner denoted for tied term s by s, and the preceding members of the tied net

are fie-arities OF s, the last arity is a genuine tie-arity of 5. For 2-tied term s pair (s™,s?) is a 2-zie of

S, ; an in-2-tie, if SEEinz(X,E), and an oxz-2-tie, respectively, if SEEoutz(X,E). For 1-tied term its first
member is the 7-z of its last member. O-tied term is its 0-z¢ itself. For 2-tied term s, s is the 1-

tie (in-1-tie, if sV is an in-arity and onz-1-zie, if s is an out-arity) of s..We use names in-tied and
in-ties and out-tied and out-ties respectively depending on which one of sets Einz(X,E) and
EoutZ(X,E) those tied elements belong. The set of the in-k-tied and out-k-tied elements (k = 0,1,2)

are denoted Finz(X,2)® and Fous(X,Z)® respectively, and the union of those sets by F(X,E)Y.
The set of the in-ties in net s is denoted IT(s), and OT(s) for the out-ties, respectively.

For any net s (¢XUZE) & is named as an in-gluing form of 5 , Where EeEinNL(S), and if

EeBoutNL(S), &s is entitled an out-gluing form of 5. The set of all in-gluing forms of s is #be in-giuing

form of s , denoted Sing and the set of all out-gluing forms of s iS #he out-gluing form of s , denoted Soug.

The union Sgiue = SingUSoutg 1S called zhe gluing form of s, and s is denoted Sger . The gluing form of

each letter in XUZXo is the letter itself. The arities have no ranks and therefore either no gluing

forms. We define
Foumg(X.E) = {Sigue:seRu(X,2)},

Finsg(X,E) = {Sigue:s€Rns(X,2)} and

ﬁZg(va‘t) = IEinZg(XﬂE) U IN:JoutZg(X,E)-

16

For each SEEz(X,E)} we denote NG(S) = {Si,Sigue}- The set of all in-ties in net t is denoted IT(t),

and OT(t) for the out-ties, respectively. In-ties and out-ties correspond in-coming and
respectively out-coming labeled edges and node letters correspond labeled nodes Engelfriet J
(1997).

We define for each se{c}UFs, .

t= S(},Li;Xj | €3, jeSSUN, C)
is a net, where for each (ie S, je§) picRns(X,E), AjeRuz(X,E), wi is replacing in-arity
letter & in's and %; is replacing out-arity letter & in s, and w™=¢,, 4 = & , and C is a sample
of conditions to be fulfilled (normally assumed to be known) or equivalently

s(u;A| C)
is a net, whenever ueﬁinz(X,E)|§SUN|, and xeﬁoutz(X,E)|SSUN|, where the first members in each
projection elements of p and A are in Uno(s). Nets pi , ieS, are called down-subnets of t,

respectively Aj , je§s™, are called up-subnets of t, and for each (qesub(t)) sub(qg)<sub(t), where

the set of all subnets of net t is denoted sub(t). Cartesian elements, the projections being nets are
Cartesian nets. Nets where the out-ranks of the nodes are 1, are #ees, and trees where the in-ranks

of the nodes are 1 are chains. We call sets of trees forests. A set of nets is called jungle, and for
jungle T we agree about sub(T) = U(sub(t):teT). What is said for nets is in the following
generalized for jungles as relations from elements to sets of elements and is denoted
respectively. E.g. for jungle T we denote sub(T) =U(sub(t):teT) and L(T) = {L(t): teT}. We say

that a nez is finite, if the cardinalities of the frontier and ranked letters in the net are finite.

Trees can have only nodes with one out-tie at most. The main difference between nets and trees
can be demonstrated with the following net containing downstream subnet s incorporating a
node with more than one out-tie:

q(sisAj|ieSq™, jegq™, (Viex) sii =s, |p(t,s)| =1, [{si:iex }|>1),

where kS Sq™, p(t,) is defined later in 1.2.2.1.4,

17

Definition 1.2.2.1.3. LINKS and NET CLASSES.

Subnets of nets being frontier letters are called /eaves of the net, and the set of all leaves in v is
denoted by Leav(v). For net v we denote fron(v) as the set of the frontier letters of v, and rank(v)
is the set of all ranked letters in v.

For t = s(ui; A | 1€8s™, je§s™, C) net pi is said to be (nexz)out-linked 10 s by out-tie of p,
called out-(arity) linkage OF pi, respectively s is said to be (next)in-linked to pi by in-tie of s, called
in-(arity) linkage OF . An in- and out-linkage of the same node are said to be sucessive to each other. The
linkages between the same two nodes are para/le/ with each other. If net u is out-/in-linked to net g
and q is linked to net v, we say that u is (successively) out-/ in-linked to V. The nets which are not
linked to each other are disjoined with each other.

A linkage (comprising of consecutive in- and out-arity linkages) which connects two nodes in
a net is an zmward linkage connection OF the net; the linkages which are not inward connections are
outward linkage connections. 1T @ net has no outward linkage connections, it is said to be cosed.

Net t = o(ui; Aj | 1€Ss, j€$s, C) is called o-rvot revealing net , where ceX. Linkages in nets can
also be defined by using wider parts of nets: for each ie S, triple (o,root(pi), ™ w®) constitutes
node linkage of 1, and (root(ui),o,uiPw™) is its imuerse; respectively for each jeg,
(,100t(AiL) A VAP s node linkage of £, and (root(Ay),o,4 @) is its inverse. The set of the node
linkages of t we denote NL(t) and we use notation NL(t) for the set of the inverses of elements
in NL(t). Because inverses exist in the up-subnets of root revealing nets, it is natural that
“writing directions” of the letters in linkages in nets should not determine those nets. Therefore

we will give a sensible definition for the identity of nets:

For nets p and q we define p = q, if (VseNL(p)) seNL(q)UNL*(q) and (¥seNL(q))

seNL(p)UNL *(p). Actually each net defines a cass of nets equal with i+ and for net t we denote that

set with [t], its elements entitled #clss representatives. 1f there is no danger of confusion, we

suppose the appropriate representative to be given.

Definition 1.2.2.1.4. POSITION. Next we define locations, positions, Of nets in nets using arity
letters. Let q = o(Siitj| ieSs™, je §s*) be a net. We say that the out-tie of net s in q is a position of
siinqand s is the position OF SiLourg IN @, the sets of the described positions are denoted »(q,Si.)

(S1T(si), p(A,SiLoutg) (S EoutNL(SiLoutg)), respectively, and si. and SiLoutg are nexz below Q OF nexct

18

down positioned in @, i€ 5™, and an in-tie of t;_in q is a position of ty_in q and) is the position of
tjLoug IN Q, the corresponding sets denoted p(q.tj) and p(0,tjLoutg), and xexz above Q OF next up
positioned In (, je§s". Furthermore generally for arbitrary nets u and v we define inductively
positions as catenations p(u,v) = p(u,s)p(s,v) and p(u,r) = p(u,s)p(s,r), whenever sesub(u), r€Vgiue
and vesub(s), next positioned in s. We also say that v and r are positioned in u. If is next above h
and h is next above u, we define that ¢ is above U. Below is defined analogously. The same

terminology is a practice also for the positions of the corresponding nets. Next below/next above

is denoted shortly by </ , and below/above is denoted by < / > . Let P; and P, be two
arbitrary sets of positions. We define and denote that P;<P , if P; and P, are distinct with each

other and Vp;eP; 3 p2 € P, such that pi<pz, and P1<P, , if Vpi1eP1 pi1<p2 whenever p,eP; .

The set of all positioned elements in t is denoted p(t). For sets T and S of nets or gluing
forms we denote p(T,S) =U(p(t,s) :teT, s € S), and p(T) = U(p(t):teT). Furthermore due to the

importance of the unoccupied character in nets we take for use notation Unop(t) for the set of the

positions of the unoccupied arities in t, and generalize the notation as usual for jungle, say T,
Unop(T) = U(Unop(t):teT). Furthermore for jungle T we denote the cardinality of Unop(T) by
dp(T). Cf. “marked letters” Ohlebusch E (2002).

For net v, vIp (an occurrence), is denoted to be the subnet of v having or “topped at” position p

iN V. A down-/ up-frontier net 0f net v, down-/up-fronnet(v), is such a subnet of v, whose occurrence
is next below/next above v (at so called down-/up-frontier position Of v). We denote Frd(v) meaning
the set of all down-frontier nets of v, and Fru(v) is the set of all up-frontier nets of v, and F(V)
means the set of all frontier nets of v.

We define the height of net t, hg(t), by the following induction:

1° hg(t) =0, if teEUXUZ,

2° hg(t) = 1+max{hg(s): seF(1)}, if te Fz(X,E)\(EUXUZ)).
For arbitrary net t, there is in force equation |[t]| = |[{(t,0) : ceL(t)NZ}|.

Notice that for any net t and its subnet s outside XUZX,, the positions of s and its gluing form

in t are different and that the position of s is unequivocal, but its gluing form can be rearrange in

many ways to the context of t next to it (thus forming new nets), depending on which arities of

19

the gluing form is chosen to occupy arities of the context. Trees (owing only one out-arity) have
naturally no such difference between the positions of nets and the gluing form of them. We will
come to this matter of rearrangement more profoundly later in the chapter of rewriting.

Definition 1.2.2.1.5. ENCLOSEMENTS. Lett = s(ui;2;j | ieSs™, je§s) be a net. We call out-
gluing forms Wioug, 1€3s™, S-downstrean elements of t for s (s being the upcontext of ¢ for those elements, or
Jor the set of themr) and in-gluing forms Ajing, J€§s™, S-upstream elements of t for s (s being the down
context of t for those elements). |f we want to emphasize that net v is the context of net u only for the
frontier letters in u, we say that v is the apex of u, apex(u), for those letters; accordingly down and
up apex , respectively. We agree of notation apex(T) = {apex(t): teT}, whenever T is a jungle.

Net s can also be expressed with notation conp(t), where

P = { p(t,titoug), P(LAjLing) © 1€Ss™, JEGF
Notice that context conp(t) is the apex of t, if P = {s(t,x) : xe XNL(s)}.

The sets of the ties of pi. and A to s, i€Ss™, je§s™, are matching arity linkage sets of s 1o t and the
family of all of them is denoted MAL(t,s). We also call s the zbover of pi_ in t, denoted
t\o{HiL: 1€}, and each i, 1€SN is a belower O S In t, the set of the belowers of context s in t is
denoted t\,s.

We say that ret s is linked ontside to net ¢ , 1f S is linked to t and the set of the arity linkages of s
to t differs from set MAL(t,s).

If u is a subnet of net v, we say that v can be divided in #wo nets . U and the abover of u in v.
The contexts of the subnets of t are the enclosements of t (we say they are in t or t is embedding

them), and the set of all enclosements of t is denoted enc(t). For jungle T we denote
enc(T) = U(enc(t) : teT). We say that a ez is finite, if the cardinalities of the frontier and ranked
letters in the net are finite. The elements in enc(t)\t are entitled genuine enclosements of tand the set

of them is denoted encgy(t); for jungle T we have ency(T) = U(ency(t) : teT).

For further need it is worth to notice that because for any net t NL(t) = U(NL(s) : seenc(t)),

we can write [enc(t)] = enc([t]).

20

Definition 1.2.2.1.6. OVERLAPPING and OMISSION.

Let p and q be arbitrary nets. If there is such net t, each enclosement of which is in both [p] and
[g] and has a linkage connection to each other, we say that p and q ozeriap each other, and t is said to

be shared among p and . If E™ is the denotation for the set of all shared nets among p and q, 7

overlapping net of p and g denoted pmq is such a net in E™ (the most “extensive”) that (VkeE™)

keenc([pmq]). For jungles P and Q we define PAQ is such a net in E™ (= N(E™ : peP, qeQ)) that

keenc([pmq]) whenever keE™ , and MQ = QAQ. Nets are said to be distinctive from each other, if they do

not overlap each other. A jungle is distinctive If all of its nets are distinctive from each other, and

furthermore a relation over a distinctive jungle domain is entitled a distinctive relation.

For an arbitrary nets s and t zhe set of the positions of the outside arities of t in S, (Unop(t,s)), means the

set of the positions of all those arities of the elements in L(tms) which are not occupied by
anything in net s.

Let s and t be two arbitrary nets. Let s° be the context of such a representative of [s] that the
context is for the gluing form of a representative of [smt], and respectively let t° be the context of

such a representative of [t] that the context is for the gluing form of a representative of [smt]. Jungle

{s°t°} is called the omission of s by t or s omitted by #, denoted s1t . Notice that an omission may be

broken (cf. “broken jungle” defined later). For arbitrary net s and jungle S we denote

S\T =N(s\t:teT) and for jungles S and T we use notation S-T = {s\1T : seS}.

Net, say k, possessing nets s and t as subnets and for which k1t = slt and kls =tls is #e

assimilation of s and t and we denote sU t.

21

1.2.2.2 Characters of Nets

Here we represent some features typical to nets and the relations between them.

Definition 1.2.2.2.1. NEIGHBOURING, ISOLATION and BORDER.

If nets do not overlap each other, but are linked to each other, we say they are neighbouring each
other. A set of the neighbouring nets of a net is called a zouching surrounding of the net. Nets are said
to be isolated from each other, if there is a net neighboured by them. We say that nets being
neighboured by each other are /Znked directly, and nets being isolated from each other are /inked via
isolation.

If nets are neighbouring each other such that they are not isolated from each other, we say
they are closely neighbonring €ach other.

If nets are isolated from each other, but are not neighbouring each other, we say they are
totally isolated from each other.

Net s is t-isolated, if the nodes of t are totally isolated from each other by the nodes of s, and
inversely.

The set of the linkages connecting two nets to each other is called the border between those
nets. The border may be empty, too. The union of the set of the borders between a net and all

other neighbouring nets is called simply #be border of the net.

Definition 1.2.2.2.2. THE RIM and BROKEN JUNGLE.

The nets of a jungle which are in-linked inside the jungle, but not out-linked, are ouz-end nets and
at out-end positions in the jungle, and the nets out-linked inside a jungle, but not in-linked, are zx-end
nets and at in-end positions in the jungle. The union of the in-end nets and the out-end nets in a
jungle is the 7in of the jungle.

We call a jungle broken, if each of its nets is disjoined from each other; otherwise it is
unbroken. Notice that unbroken jungles are actually nets. Broken jungles, each net having only
one letter outside the arity alphabet, are #zally broken. E.g. any set, the elements of which are
nodes, can be seen as a totally broken jungle and is called degenerated. Because of the close

relationship between nets and jungles we often denote jungle by small letter instead of the

22

normal procedure for sets. Comparative study in the form of dependence can be found in Diekert V,
Métivier Y (1997).
Notice that even if a net itself is unbroken, an enclosement of it may be a broken jungle.

Definition 1.2.2.2.3. ROUTES and LOOPS.
A denumerable ronte (DR) between nets is defined as follows:
1° any linkage between two nets is a route between those nets, and
2° ifPisa DR betweennetsand t, and Q isa DR between t and net u, then PQ is a DR
between s and u.
DR can also be seen as an inversive and transitive relation in the set of the nets, if “linkage” is
interpreted as a binary relation in the set of the nets. Any route can also be denoted by the
catenation of the nets linked with each other in the route. Cf. pazhs and gyeles Muller J (1997) .
We define an in-/ out-one-way DR (in-/out-OWR) between nets as transitive relation (“linkage”
is a binary relation) among the set of the nets as follows:
1° any linkage which is an in-/out-linkage of net s and on the other hand an out-/in-linkage
of nettisan in-/out-OWR from s to t, and
2° if P is an in-/out-OWR from net s to net t, and Q is an in-/out-OWR from t to net u,
then PQ is an in-/out-OWR from s to u, and we say that S 7z-/ out-dominates U and u
out-/ in-dominates S.

Nets s and t are A- or |Al-routed With each other, if A is the set of routes between them. Cf. Trace
semantic (van Glabbeek RJ (2001); Aceto L, Fokkink WJ, Verhoef C (2001)).

Triple (N,R,f), where N is a jungle, R is a set of OWR’s and f is a mapping connecting the
elements of ‘R to pairs of nets, describes graph (Rozenberg G, Salomaa, A ed. (1997); Muller J
(1997)).

If there is no need to distinguish in- and out-arities from each other we write nets simply

compounding indexes for in- and out-arities to be one index and interpret out-arities as in-arities.

An DR from a net to itself is a /op Of the net, and ouzside l0op, if furthermore in the route there is
a linkage to outside the net; otherwise it is an zuside loop of the net. The loop where each linkage is

among the linkages of the same jungle, is an znside loop of the jungle. OWR’s which are loops (OIP/R-

23

loops) are called directed loops. A bush 1S a jungle which has no inside loops and e/ementary, if it has no

parallel linkages between its nets.

The following is an example of equal nets, containing an inside directed loop; o, p, A and p are

nets, not including to arities (& stands for in-arity, & for out-arity) nor frontier letters:

s=1(5 & (ST TRY B2l ; Eboh) ; gtﬁu2u(§ul§pp’ Eu2tes ; Burlos, Eubual))
q = U(Eu&pp,&uz &s ; Enkoo, Epbiar)
r= V(& & & ; Enss, Eabad)

ency(s) = enc({u,p,o,r,q,1,A,t,v})
ency(q) = enc({u,p,o,r,s})
ency(r) = enc({p,A,v,s,q})

This yields s,q and r are enclosements of each other and we have s=q =r.

1.2.3 Realizations, Algebras and Homomorphisms

In this paragraph we introduce the notions of nets in semantic point of view referring to algebras
overall. We represent generalization for more common X-algebra definition (Aceto L, Fokkink
WJ, Verhoef C (2001); Burris S, Sankappanavar HP (1981)) — concerning nets. Net rewriting,
represented closely later, can be guided by realizations of nets which realizations can be
understood also to correspond on temporal logic and models Gabbay DM, Hogger CJ, Robinson
JA (1995). Due to the generic essentiality relations between algebras in the respect of free

generation and morphisms are briefly taken into the consideration.

Definition 1.2.3.1. OPERATIONS and XXZ-ALGEBRA. The represented definition for nets

allows upstream subnets of nets to influence in producing the images of realizations of the roots

24

of the nets. An (upstream related or /ok-ahead) £ X E-algebra A, Z, S 2, X, S X, E, S E,Isa
pair consisting of a set A (including Z,,), and a mapping, an operation assigning mapping, that

assigns to each operator of X, UX,UE, (Z,<S X, X, E X, B, & &) A-operation, to (a,p)-ary

operator ceX, a relation, (o,B)-ary operation c": A* ® Eoutz(X,E)ﬁ — A, where a = in-rank(c) and

B = out-rank(c), and to each letter xe X, gperation X" for which x” (a,t) = a, whenever acA,

teEoutZ(X,E), and to each arity letter E€E,i, constant operation E"in E,. The operations of the
ground letters are defined by the constant images in A. For simplicity we write A = (A,Z,X,E,)

and assume the operation assigning mapping to be known. We say that & = (B,Z,X,E,), wWhere

B (including E.;,) is a subset of A, is a subalgebra of # | if o = ¢"|B* ® Eoutz(X,E)B, and the
image set of o™ is in B, whenever ceX, , and x* = x’|B and £*= &"|B. Set B is called a c/osed

subset of A. Sub(#1) symbolizes the set of all subalgebras of . It is worth to mention that up-
subnets in realizations of root revealing nets are important as e.g. in TD (defined later), where

images of operations may in that way be selected to direct to desired in-arities. For each £, X,Z,-
algebra A = (A, 2,UX,UE,) we define #be power algebra of S, P(A) = (P(A), Zp(yUXpyUZpw),

where for each of its element A" and operation 6™, A'c"“ = {ac" : acA'}.

Definition 1.2.3.2. ZXE-NET ALGEBRA. Algebra §:5(X) = (Fz(X,E), ZXE) defined so that for

each operator ceX and XE-nets s;, i€Ss, and A, eRous(X,2), je $s
o510 | i€, je§o) = o(is] i€5s, je§o), if G20, and
o051 €8s, je§o) = o, if G0,

whenever for each i€ $s, uieﬁnz(X,E) and p;. =s;, and
= %(s)=s for each seToUXUE and ye XUEi,

is called the EXE-net algebra OF free algebra. 1 in the XXE-net algebra we interchange in each

ranked letter the in-arities and out-arities we will get ke co-algebra of the XXE-net algebra.

25

Definition 1.2.3.3. REALIZATION of NETS. Operation y" is #HA-realization of 7y, whenever
yeXoUXUE. Lett=s(ui;A;|ieSs™, je§s™) be anet. Then

t'=s"(ui", Ay | e8¢, jegs™, Ciy)
IS A-realization Of t, where Cy, is a sample of conditions to be fulfilled (normally assumed to be
known). If net t is given in the form t = s(u;A), then we can write #-realization of t

t'=s"(0),
when p, " is a Cartesian element where each projection of p, is replaced with its #-realizations.
For jungle T we denote T" = {t" : teT}}, and the set of s-realizations of all ZXE-nets is denoted
F=(X,B)".

Net s is called the carrier ner of s". Let A = (A Z,X,E,) be a ,X,E,-algebra. We may also use
notation t = (t*) *, and for jungle S, S = (S")™. The set of the #-operations of the nodes in t is
entitled A-7esz of t or the nest of t*, t and t* being said to be seyond any subset of that nest.

Let t = s(ui ;A | 1€35°°9, je §s™) be a net, where $°°® is such an in-rank index set of s that for

each (i) pieFins(X,2)Y. Let A, = {ai : aicA, i€5°°} be an indexed subset of A, a sz of
mputs.

t'(Ao) = 8" (i (@), A | 1€5°°%, je g, aie Ao, Cra)
is called t"-transformation of Po, the set of outputs of t" for Ao. Important examples of realizations are

equations, where e.g. symbol “=" is the realization of a ranked letter with the in-rank two, and
transformations are needed to considering the validity.

Transformations are essential in the context of rewriting systems.

Let r be a binary relation in P(A). A-realization t" is e-confluent , if t"(A) ¢ t"(B), whenever ArB.

Net realization descriptions

Lemma 1.2.3. Each demand or claim can always be presented with realizations of nets.

PROOF. Each presentable elementary claim is actually a relation in some algebra. [

26

Definition 1.2.3.4. Let A = (AZXE) be a £XE-algebra. Let R, S and T be s-realizations of
some nets. Now we are introducing for only descriptive use some special nets by example wise:
Transformer graph (TG) T over {R,S,T}, denoted TG({R,S,T}), is a realization of the net having

carrier nets of R, S and T among its enclosements. If the set, for which a transformer graph is over,
is singleton, we speak simply of zansformer. 1f H is a set of realizations, set K being one of the
subsets of H, we say that 7' is seyond K whenever 7 is TG(H) and we denote TG(|K).

Realization process graph (RPG) contains in an addition to TG input and output elements as its nodes
for concerning realizations. Cf. wmodel theory Chang CC, Keisler HJ (1973), process graphs van
Glabbeek RJ (2001), auntomata Rozenberg G, Salomaa A, ed. (1997).

Generally speaking: any RPG is a TG-associated net, where the projections of Cartesian
elements of A in the RPG are in- and up-connected, respectively, to at most one #-realization in

the TG.

Transformation graph (TFG) comprises only input and output elements of RPG.

Definition 1.2.3.5. GENERATORS. Let A = (A,Z,X,Z,) be an algebra. We say that subset H of
AIS a generator set of S and iS generating S, and we denote [H] = A, if
A=N(B:HSB, (B,Z,X,E,;)e Sub(A)).

H is called « base generator set Of A, if there is no genuine subset of H generating 1. Notice that

algebra may have several base generator sets.

Definition 1.2.3.6. HOMOMORPHISM. Let A = (A2, X,E,) and B = (B,Z;X,E,) be two algebras.
Let ¢ : A —B be an indexes preserving relation. The homomorphic extension of @ from A to B, shortly
homomonphism , s @ relation, denoted @: £ — % , defined such that

®(a) = ¢(a) , whenever acA, and

00" @ik | i€Ss, j€90)) = S (@(@i);A | : i€50, j€o),

27

whenever ceX and (a;Aj| i€Ss, je§s) € A"%| ® Eoutz(X,E) 5l . Homomorphism : A — A is

antomorphism.

Definition 1.2.3.7. FREE GENERATING. Let K the set of all XXE-algebras. We say that fe

generating set Ao generates 1= (A,X) freely over K, if there is such subset A, A that
() [A]=Aand
(i1) for each algebra 3 = (B,X) in K and each relation ¢:A,— B, there is the homomorphic

extension of ¢ from A to %.

The next clause represents the well known result for trees, at this time for more general aspects:

nets.

Proposition 1.2.3. Set ZUXUZX, is the base generator set of £XZ-net algebra §=%(X) and
generates it freely over all ¥XZ=-algebras.

PROOF. First we prove that ZUXUZX, is the base generator set of §s=(X) and for that purpose

we define for each jungle Q<Fx(X,Z) the following sets:

G(Q) = QU{c™ ™ (s;; A | i€Se, je§o) : 5i€Q, hjefh : LeFus(X,E), heQ}, ceS\Zo},

G’(Q) =Q,
G™(Q) = G(G"(Q)), ne INy,

G = U(G"(Q) : nelNp).
Let ceX and §'<S; and § <=9, and sitj €G, i€, je§". Then (V ied’, je§) (I mynje INo)
sieG"1(Q) and tjeG"i (Q). Therefore

sieG'(Q), ie§ and t;eG"(Q), je,
where m is the maximum of the numbers ny , ke S"Ug". We can write

W51 | i€ Ss, je§o) € G(GT(Q)) = G™X(Q) < G, where iy =t

This yields G generates itself. Because Q< G, it is in force

28

[Q] €G.
On the other hand for each (neINg) G"(Q)<[Q]. Therefore GS[Q]. If Q = EUXUZ,, we thus

have G = Fy(X,&), and finally [EUXUZ] = Fx(X,E).
Let then A = (A2, X,Z,) be an XXE-algebra and ¢: ZUXUZ—A an indexes preserving
relation. We define relation p: §:=(X) — # such that

B(Y) = ¢(y) , whenever ye EUXUZ,, and
B €56, j€90)) = " (BE)A | © i€ s, j€§o),

whenever ceX and (si;Aj| 1€5s, Je$s) € Al3°|®ﬁoutz(X,E)|3“|. Clearly B is the homomorphic

extension of ¢ from §x%(X) to A. [

1.3.§ Net homomorphism, Substitution and Matching

Definition 1.3.1. NET HOMOMORPHISM.
Let X and Y be frontier alphabets, ~ and Q ranked alphabets and =y and Eg, arity alphabets. We
introduce new distinct rank-indexed arity alphabets Ei, = {&; : i€&n} for in-arities and Equt = {&; :

i€ &y} fOr out-arities respectively, disjoint from all other used alphabets.

Net homomonphism h: Fs(X,Bz5) UFs(X,B5) — Fa(Y,Ea)UFa(Y,Eq) is a relation defined such that
h@® = hs(o)(h(wi); h(A) [i€8inhs(o)) J€ Bouthy(e) foreach t=o(ui;Aj | i€Sq, jeo) € Fs(X,Es),

and

h: SoUXUEs — Fa(Y,Za)PUQ0UEG is an initial rewriting relation, where h(€) e Eq for each &

eZy and h(c)eQowhenever ceX;

h|X named the znitial manoenvre rewriting relation, and h| Ex the initial arity rewriting relation |

hy: 22— Fo(Y,EqUEinUEe) UQ IS & Z-ranked letter rewriting relation

h(u) € Fina(Y,Z0)®, and h(u). = h(u.), whenever ueFins(X, E5)® and u, X,

29

h(u) e Foua(Y,Z0)®, and h(u). = h(u.), whenever ueFou=(X,E5)® and u, e,
h(u) € Fina(Y,Z0)® U Fina(Y,Z0)®, whenever ueFis(X,E5)® and u_eX,
h(u) € Foua(Y,Z0)® U FoualY,Ea)?, whenever ueFous(X,Z5)® and u_eX,
h(u) € Fina(Y,Z0)?, and h(u). = h(u,), whenever u e Fis(X,E5)?, and

h(u) € Foua(Y,E0)®, and h(u). = h(u,), whenever u e Fous(X,Zs5)?.

Relation h is said to be down linear, if the number of the positions of each letter of Ej, in hs(o)
IS one at most whenever ceX; up linear is defined respectively for the letters in Eqy. Relation h is

down preserving (Otherwise down deleting), if | &inng(0)| = |90/ for each ceZ, respectively is defined

preserving and up deleting. \Ne call h down alphabetic, if N(XUEz) SYUEq, and for each ceZ,

hs(c) = o(&i; & | 1€6in, J€&our), Where weQ, cf. #ree homomorphism Denecke K, Wismat SL (2002).
Notice that because net homomorphism is in its nature “replacing”, it can be seen as a special

type of rewriting systems.

Definition 1.3.2. SUBSTITUTION.

Let T and S be arbitrary jungles and P a family of sets of positions. We define
TP wS:*) = UMu®vis; AP 88) t=v(ui;Aj | ieS™, je§™) , p(t,ui) P,

Pt M) ePteT, seS, *, vis € Soutg , OSE Sing)-

That is T(P «S : *) is the jungle which is obtained by “replacing” (considering conditions *) all
the subnets of each net t in T, having the position set in family P, by each net in S. Notice that
the result may be T (that is no execution in replacing), if the arities of the replacing nets and on
the other hand the arities of the nets in T are different or P does not represent any positions of
subnets in nets of T.

If each position set of family V of subnets of each net t in T is wished to be replaced by each
of elements in S, we write simply T(V«<S).

Next introduced substitution relation is a special example of net homomorphisms, an

essential component in rewriting.

30

Net substitution relation (here f) is such a net homomorphism in FE(X,E)UEE(X,E) that each

ranked letter rewriting relation is identity relation, as well as the initial arity rewriting relations,

and for each veFs(X,2)?) fiv) = v:¥ v@ f(v,) and for each peFs(X,2)™) f(w) = p®@ ().
Let X, be a set of frontier letters. Net substitution relation f is said to be Xq-joining , if

(1) {f(X). : xeXo} is singleton and

(ii) the arity of the gluing form of each letter in X, is occupying an unoccupied arity of f(x),_, and
|Xo| is the cardinality of the set of those unoccupied arities.

It is worth to remember that if an image of net substitution relation for a leaf is empty (set),
the arity having been occupied by that leaf is after substitution an unoccupied arity.
Let P and T be arbitrary jungles. If S is a catenation of substitutions such that T = S(P), we say

that there is an S-substitution route between P and T.

Definition 1.3.3. INSTANCE. Net t is an zustance O net s, if t = f(s) for some net substitution

relation f. Notice that s is a context of t for the in-glue form of net f(v),, whenever ve XUZX, is in

s. Notice that s = conp(f(s)), if P € { p(f(s),s), U(p(f(s),f(x).) : xe XNL(s))}.

Definition 1.3.4. MATCHING. Net s is said to wazh t by net substitution relation f in p(t,s), in a

so called matching point, if 1(s) esub(t); thus apex(s) eenc(t). If net s matches net t, we say that the
genuine tie-arities of s in the linkages between s and t are the matching arities OF S in t, denoted
MA(t,s).

1.4.8 Covers and Partitions

Definition 1.4.1. For jungle T a type p of net (e.g. a tree) being in enc(T) is of maximal p-type in
enc(T), if it is not an enclosement of any other p-type net in enc(T) than of itself. The other p-

type nets in enc(T) are genuine.

31

Definition 1.4.2. COVER of NET. A set of nets is said to be a cover of net t, if each node of t is

in a net of the set. We denote the set of all covers of net t with Cov(t), and for jungle, say T, we

agree Cov(T) = U(Cov(t):teT).

Definition 1.4.3. SATURATION of NET. Cover A saturates net t, if Acenc(t). We denote the set

of all saturating covers of net t with Sat(t), and for jungle, say T, we agree

Sat(T) = U(Sat(t):teT).

E.g. A saturating cover of net t is zazral, if each net in the cover is of maximal p-type, where p-type net

is the net the nodes having only one out-tie (resembling in that respect tree).

Definition 1.4.4. PARTITION of NET. A saturating cover of net t is a parition Of t, if each node of t is

exactly in one net in the cover. We reserve notation Par(t) as for the set of all partitions of net t, and for
jungle, say T, we agree of notation Par(T) = U(Par(t):teT).

For an arbitrary jungle A we define zbe partition induced by jungle A

(denoted PI(A)) = {MA W{MA": A'CA”, A" cP(A)}: A"cP(A)}.

We can write the following proposition:

Proposition 1.4. “A correlation between partitions and covers of nets”.

For any net s and jungle E

EeCov(s), if and only if PI(E)msePar(s).

Notice that if A is a saturating cover of net t, then PI(A) is a partition of t.

32
15.§ REWRITE

In this chapter we introduce rewriting by using algebraic presentation described earlier regarding
edges as ties or linkages which unite node- and on the other hand edge-rewriting (Thomas W
(1997); Engelfriet J (1997)). Tern rewriting as a special case of here presented rewriting can be
probed e.g. in (Ohlebusch E (2002); Meseguer J, Goguen JA (1985)).

Definition 1.5.1.1. RULES. A rewrite rule is a set (possibly conditional) of ordered “jungle-
jungle” -pairs (S,T), the elements of which are entitled rule preforms, simply rules, if there is no
danger of confusion, denoted often by S—T, S is called the %/ side of pair (S,T) and T is the righs
side OF it. We agree that right(R) is the set of all right sides of rule preforms in each element of set
R of rewrite rules; left(R) is defined accordingly to right(R). The frontier letters of nets in those

rule preforms are called wanoeuvre letters.

Types of rewrite rules

Next we shortly represent some general types of rewrite rules.

Definition 1.5.1.2. A rewrite rule is said to be siuultancous, if it is not a singleton van Glabbeek
RJ (2001). The inverse rule of rule ¢, ¢, is the set {(T,S) : (S,T)ep}. A rule is singl, if it is
singleton.

A rule is an identity rule, if the left side is the same as the right side in each rule preform of the
rule. A rule is called monadic, if there is a net homomorphism connecting the left side to the right
side in each rule preform of the rule. If for each rule preform rin rule ¢, hg(left(-)) > hg(right(,)),
we call ¢ Jeight diminishing, and if hg(left(r) < hg(right()), ¢ iS height increasing, if hg(left(r)) =
hg(right(r)), we call ¢ height saving.

A rule is alphabetically diminishing, if for each rule preform » in the rule there is in force:

33

(i) right(») is a ranked net or hg(right(-)) = 0 or (ii) hg(left(»)) = 2, root(right(»)) € L(left(s)) and
hg(right(r)) = 1. For an abbreviation reason for a set of rules 22 'we may use notation

left(22) = { left(r) : €p, pe &2 } and respectively for the case of right side.

More specifically:
Definition 1.5.1.3 Any rule and the concerning pairs (i.e. rule preform) in it are said to be

1° manoenvre increasing, 1f for each of its pairs, r, fron(left(r)) C fron(right(»)),
2° manoenvre deleting, if for each of its pairs, r, fron(left(r)) O fron(right(»)),

3° manoenvre saving, if for each of its pairs, r, fron(left(r)) = fron(right(»)),

4° manoenvre changing, if at least for one of its pairs, r,

fron(left(r)) & fron(right(»)) and fron(right(s)) & fron(left(r)),
5° manoenvre mightiness saving, 1f for each of its pairs, r,

Ip(left(r),x)| = Ip(right(r),X)| , whenever x is a manoeuvre letter,
6° arity increasing, If for each of its pairs, , Uno(left(r)) C Uno(right(r)),

7° arity deleting, if for each of its pairs, , Uno(left(r)) > Uno(right(r)),
8° arity saving, if for each of its pairs, », Uno(left(r)) = Uno(right()),
9° arity mightiness saving, if for each of its pairs, r,

Ip(left(n),&)l = Ip(right(r),£)l , whenever & is an unoccupied arity letter,
10° (ranked) /etter increasing, if for each of its pairs, », L(apex(left(r))) C L(apex(right(r))),

11° (ranked) /ezter deleting, if for each of its pairs, r, L(apex(left(r))) > L(apex(right(r))),
12° (ranked) /etter saving, if for each of its pairs, ~, L(apex(left(r))) = L(apex(right(r))),

13° (non-arity) letter mightiness increasing, if for at least one of its pairs, r,

| U(p(apex(left()),z) : z is a frontier or ranked letter) | <

| U(p(apex(right(r)),z) : z is a frontier or ranked letter) |,
14° X-manoenvre letter increasing, decreasing, saving, if
L(left()) n X C, D,= L(right(r)) n X , respectively,

15° X-manoenvre mightiness increasing, decreasing, saving, if for each xeX

34

Ip(left().x)I <, >, = Ip(right(:),X)I , respectively.

Rule ¢ is /ft linear, if for each re ¢ and manoeuvre letter x there is in force Ip(left(),x)l = 1, and

right linear, 1t |p(right(r),x)I = 1. A rule is zotally linear, if it is both left and right linear.

1.5.2 Renetting systems and Application

We introduce systems using rewrite rules to transform nets, and type wise to define sets of rules

with special instructions regarding to apply them.

A set consisting of rewrite rules and of conditional demands (possibly none) Ohlebusch E (2002),
(for the set of which we reserve symbol ©) to apply those rules is called renetting systenr, RNS in
short, Engelfriet J (1997), and a ¥X-RNS, if its rewrite rules consist exclusively of pairs of XX-
nets. Conditional demands may concern application orders cf. process algebra with timing Baeten
JCM, Middelburg CA (2001), probabilistic processes Jonsson B, Yi W, Larsen KG (2001), priority in
process algebra Cleaveland R, Luttgen G, Natarajan V (2001). The objects to be applied may be
required to possess certain nodes, linkages or neighbours or to be carrier nets for operations in
selected algebras. Desired substitutions may be “context sensitive” i.e. chosen to be of left or
right side and matching positions where applications are expected to be seen to happen may also
be prerequisites. Notice that rules in RNS’s can be presented also exclusively by net types: pairs
of rules in RNS’s defined in accordance with the amount of the arities or nodes possessed by
them Engelfriet J (1997), edge-replacing Burkart O, Caucal D, Moller F, Steffen B (2001).

Definition 1.5.2.1. A renetting system, shortly entitled RNS, is finite, if the number of rules and € in
it is finite. A RNS is said to be Zwmited, if each rule of it is finite and in each pair of each rule the
right side is finite and the heights of the nets in the both sides are finite. For the clarification we
may use notation &(2#) instead of € for RNS ©7. A RNS is conditional (OF sensitive), contradicted
nonconditional OF free, if its C is not empty. A RNS is simultaneons, contradicted nonsimultaneons, if it

has a simultaneous rule.

35

A RNS is elementary, if for each pair r in each rule of the RNS is monadic or alphabetically

diminishing. If each of the rules in a RNS is of the same type, the RNS is said to be of that type,
too. For each RNS &_we denote & " = R (p—¢).

Definition 1.5.2.2. APPLICATION TYPES. For given RNS @7, jungle S is &t-rewritten to jungle
T (rewrite resulf), denoted S — ., T (called &@—application), and 1S reduced under <2 0r by rule ¢ in 22,
and is said to be a rewrite object for <z or ¢ respectively, denoting T = Sg (the postfix notation is

prerequisite), if the following “rewrite” is fulfilled:

T=US(p ' (right())g) : left(:) matchess inp by some net substitution mapping fs;, 7€g, geGs, pe p(s), seS, A1),

where Gg.'s are sets of net substitution relations. Mapping f;, is called /ef? side substitution relation and
each g in Gg IS right side substitution relation, c.f. under conditional demands “extra variables on

right-hand sides” conditional Rewrite Systems Ohlebusch E (2002). We say that RNS is S-instance
sensitive (S-INRNS), if for a rule ¢ eRNS and for each seS, pep(s), Gs # T , and S-mapping instance

sensitive (S-MINRNS), if right side substitution relations are mappings. If furthermore all right side
substitution mappings are singletons, we entitle SingMINRNS to indicate RNS’s of that nature.
If all rules in RNS are obligated to satisfy the demands, zustance sensitiveness 0f RNS is said to be
thorongh. Notice that for substitution relations, &(<#') may contain some orders liable to
substituting manoeuvre letters in the rewrite process (substitution order), especially if rewrite
objects have outside loops with the apexes of left sides of pairs in rules or 22" is manoeuvre
increasing and instance sensitive. Instructions concerning binding right side substitution
relations to specific rules in RNS might also have been included in &(2#).

We say that &7 matches a rewrite object, if the left side of a rule preform matches it. We say that S is a
oot OF T in o2 and T is @ result OF S in &7 Observe that T = S, if ©#' does not match S; of course ¢ may
contain demands for necessary matching. The enclosements at which rewrites can take places (the
sets of the apexes of the left sides in the pairs of the rules in RNS’s) satisfying all requirements
set on the RNS are called the redexes of the concerning rules or RNS’s in the rewrite objects. For

RNS 27 and jungle S we denote

S = U(Sp :per’).

36

Rule ¢ of 2¢ is said to be applied to jungle S, if for each seS, s has g-redexes (redexes of ¢ in s)
fulfilling &(<#) and thus ¢ is applicable to S and S IS g-applicable . RNS 1S applicable to S and S is
AR-applicable , If 7" contains a rule applicable to jungle S.

For RNS 22 we define R —transformation relation on Fy(X,2)

—o ={(s,s) : se Fg(X,E)}.

Lemma 1.5.2. Any relation can be presented with a RNS and its rewrite objects. On the other
hand with any given RNS we have RNS-transformation relation.

PROOF. Let r be a relation. Constructing RNS @7 ={a — b : (a,b)e r} we obtain

r={(@a@—bh)):a—bexn} 0

It is quite clear that a net cannot be &-rewritten, if 2% is not instance sensitive and the
matching points of the left sides of the pairs in the rules of <7 have outside loops to the net, because the

apexes of the right sides of those pairs must be enclosed in some images of the right side substitution

relations.

Definition 1.5.2.3. We call RNS feedbacking in respect to a net, if while applying a rule in it for that
net, elements in the image sets of each right side substitution relation regarding to the preforms
in the involving rule overlap that net; feedbacking for a rule is #z/, if the demands concern all
elements in the image sets (always total, if the substitution relations are mappings since the
image sets are then singletons) and partal, if RNS is feedbacking but not totally. If instead of
only overlapping, we claim the enclosement condition for elements in the sets of the right side
substitution images, feedbacking RNS is znnerly feedbacking - Which is e.g. the case in not instance
sensitive RNS’s — and if no overlapping is enclosement, RNS is outherly feedbacking. 1f the net in
concern of feedbacking is the applicant for RNS, we speak of se/f feedbacking. The form of innerly
self feedbacking RNS in respect to a net, say t, where for each rule preform r there is in force
equation tr 1 apex(right(r)) = t 1 apex(left()), we name environmentally saving in respect to the
rewrite object in concern. If all rules in RNS satisfy the feedbacking demands we speak of
thoroughly feedbacking RNS. 1t is worth to remind that INRNS’s are capable to join distinct

applicable nets.

37

By the cardinality of the image sets of right side substitution relations and on the other hand for
each left side substitution mapping by the cardinality of the set of right side substitution relations
regarding to mutual rules, the necessary rules in RNS’s can be compensated so not to exceed
finite number — the right side substitutions relations can be defined type wise, i.e. setting their
image sets to consist nets of certain type (e.g. limited number of nodes or unoccupied arities). In
feedbacking RNS’s right side substitution relations may be regulated to depend on the type of
rewrite objects (thus covering large portions of object nets by a limited number of regulations
and not needing to raise the amount of rules possibly to infinite), e.g. replacing manoeuvre
letters, existing only in the right-handed sides of pairs in rules, by overlapping nets in specific
positions, if any.

It is somewhat of worth to mention that RNS’s, not instance sensitive, can own the same
rewriting power than INRNS’s, but then we may be compelled to accept infinite number of
manoeuvre altering rules — e.g. in the case we have a manoeuvre letter increasing INRNS, where
for left side substitution mapping f and right side substitution relation g, g(y). overlaps f(x). for
some manoeuvre letters x=y (i.e. rewrite results are expected to contain loops) and there is
expected to be an infinite number of rewrite objects for which RNS is to be constructed, or if the

cardinality of set {f(x). : xe X} is infinite.

The following example offers a manifestation of particularity in substitution orders:
Let &a1,Ep1, Ec1, Er be out-arities and &Ex2,Ep2, Eco, Edp are in-arities, f standing for a left side and g
a right side substitution relation,

(X)L, 9(X). € [S], f(X) = 9(x), S = d(Ea2€e1C(Ee2; Eca); Ean)

f(X) = o811 81 = C(Ec2; EcaCuz d(Eaz; Ean)) (€[S]), 51 Is a representative of S,

9(y) = Eard(Eaa&erts ; Ean), t1 = C(Ec2lpnta; Ec1Ea2S) | t2= b(Ep29(Y) ; Eba),
and g(y). and f(x)._ are overlapping each other, if possible,

r=a(&a ; €aX) = b(Ep2y ; EniX).
If X is substituted first, the result offers fixing point for y-substitution, yielding a loop structure
as a result. If on the other hand vy is firstly substituted, the result is totally of a different nature,

where there is a continuously growing chain of iterated nets via y-substitutions.

For left side substitution mapping f in loop situations between images must be f(x), overlapping

f(y). for some manoeuvre letters x=y , and one of them must contain itself as a subnet; illustrated

38

in the next example of an application of manoeuvre cardinality increasing, not instance sensitive

rule, with rewrite object containing a loop.

Let &a1,Ep1, Equ be out-arities and Ea2,Ep2, Eq2 are in-arities,
f(X) = Eaoty, 1 = a(&a2; Ear&pat2), t2 = D(Ep2; Epr&ants), ts = aEuz; Eaaf(X))
f(y) = Ep1b(EvaGara(Eaz; Ear) ;Ep1)

and f(x). and f(y). are overlapping each other. The result via rule a(x;y) — B(Xy,y) is

unaffected by the substitution orders between x and y.

In the following our presumption for RNS’s are not to be instance sensitive, if not indicated

otherwise.

Definition 1.5.2.4. DERIVATION. Derivation in set G® of RNS s is any catenation of applications
of RNS’s in & , say 7, such that the rewrite result of the former part is the rewrite object of the

latter part of the consecutive elements in the catenation. The rewrite results of the elements in
the catenation are called ¢4 -derivatives OF the rewrite object for the first element, and the
catenation of the corresponding rules is entitled deriving sequence in @R , for which in an operational
use the postfix notation is the default. We agree of the associativity that for any deriving sequence

¢ and any jungle S
Sq = (Sd,)d, , if ¢ =dq,.

1.5.3 Transducers and the Types

Definition 1.5.3.1. TRANSDUCER. For each weQ, i€$, and je§, , let r be a bijection, RNS-
attaching mapping, joining a set of RNS’s to each triple (®,i,j). Let A = (F+(X,E),Q,Y,Z,) be a

QY= -algebra, where for each meQ

o' Fs(X,E)* ® IEoutz(X,E)ﬁ — Fx(X,E), where o = in-rank(w) and = out-rank(w),

is such an operation relation that

39

o"(Sis;Aj | i€S0, j€§0) € USiH(®,1,]): i€S0 , j€J0).
A is called a remetting algebra. For any net teFo(X,E) realization t" is called R-#ansducer (R-TD)
over RNS-attached family R = {r(o,i,j) : ©eQNL(t), ieS,, jefo} of sets of RNS’s and it is also
entitled an snzeraction between those RNS’s. Notice that " with in-rank(w) = out-rank(w) = 1,
represents RNS-transformation relation. Referring to a set of TD’s, say G, in concern for the

realizations, we use notation (Fg(X,Z),G) for the renetting algebra. We want to notify that

samples of possible conditions liable to realizations of upstream subnets in carrier nets of
transducers may be used to set extra demands for selecting desired operating RNS’s to influence
data flows from targeted in-arities. That notion is expressed in the next lemma.

We say that @ TD watches a rewrite object, 1f any of its RNS does it. Let § be an arbitrary index

set, and for each ie§ let & be a TD, thus we denote Cartesian element R(S) = (&_i: i€S), and
aRk(9) = (e[S](i,a)R. i : i€S), whenever a is a Cartesian element. For any applicant S S&_ is
called the result of S in R,

Lemma 1.5.3.1. The conditional demands for TD’s can be presented as a TD"s having no

demands, and thus any TD, let us say &_, can be given as a TD with no demands and the carrier
net of that TD having the enclosements of the carrier net of &_ in its enclosements.

PROOF. The claim is following from lemmas 1.2.3 and 1.5.2. []

Definition 1.5.3.2. TRANSDUCER TYPES. If each RNS in a TD is of the same type (e.g.

manoeuvre saving), we say that the TD is of that type. A TD is said to be a/tering, if while
applying it is changing, e.g. the number of the rules in its RNS’s is changing (thus being rue
number altering). A TD is entitled contents expanding, if some of its RNS’s contain a letter mightiness
increasing rule preform. A TD is called #uvial, if each rewrite objects for it is the same as the
result in the TD. A TD is called upside down tree TD, if each ranked letter in the carrying net of the
TD has only one in-arity.

A TD is a transducer graph (TDG) over a set of transducers, if the set of the carrying nets of all

transducers in the set is a partition of the carrying net of the TD. l.e. TDG is a special case

40

among transformer graphs. Any transducer graph over set T is denoted TDG(T), and any
TDG(T) IS beyond each subset of T, analogous with TG relevant to that issue.

A TDG(T) is entitled direc (in contradiction to zzdirect in Other cases), if the only claims for the
TDG(T) are those of the TD's in T.

Any TDG over a set can be visualized as a TG over the same set.

Lemma 1.5.3.2. The carrying net of any altering TD can be seen as an enclosement of the larger
carrying net of some nonaltering TD.
PROOF. Straightforwardly from lemma 1.5.3.1. [

Definition 1.5.3.4. TD-TRANSFORMATION RELATION. Let R be a transducer. We define X -
transformation relation —_ in the set of the jungles such that

—x ={(ttR.) tisajungle}.
We say that two transducer #and & _are the same, # = R_, if -5 = —% .

Definition 1.5.3.3. NORMAL FORM and CATENATION CLOSURE. (/(R) is the notation for
the set of all derivations in TD K _. If for jungle S and TD R, SR_ =S, S is entitled K-
irreducible OF OF normal form under K_. For the set of all K-irreducible nets we reserve the notation

IRR(R). For each jungle S and TD K _we denote the following:

SR = SK* N IRR(R),
where R, the catenation closure of RK_, 15 the transitive closure of the rules in &_.
Let & _be a TD over family G2 . We define nomwal form TD of R, TD”,

R = R(A— R he@®).

41

1.6. § Equations and decompositions as examples of TD "s

Definition 1.6.1. EXPLICIT and IMPLICIT RNS-CLAUSE. Let &_and ‘g be two TD’s. Let H
be a list of symbols in ®, K _and ‘G, where ® = {=,€,C,c}. If R ®. & ,where ®.c®, we call

TDG over R_, Q. ,®e a RNS-clause (RCI), denoted &6(R_, Q. ,®e). 6(R.,Q.,Q) is Of first order in
respect to an element of H, if that element exists only once in the equation.
RNS-clauses cover also the “ordinary” equations (with no RNS’s), being due to lemma 1.5.2.
Any TD in RNS-clause 6(R_, Q. ,®) is called a faczor; a left handed factor or a factor of R, if it

exists exclusively in R_, and a right handed Tactor or a factor of "G, if it exists exclusively in Q..
Let K be a factor in RNS-clause 6(R_, & ,®). We say that the RCI is a representation of K;

specifically an explicit one (in contradiction to zmplicit in other cases), if K=£ and K is not a

factor of G, The right handed factors are composers of “Q_is a compositions of K, if

&(R., & ,®) is an explicit representation of K, and ® is = . A composition of K is said to be

linear/ nonlinear, 1f it is a direct/an indirect TDG. Because each operation in nets can stands for a
simple case of TD’s then that simplyfied RNS-clause equates ordinary equations with operations

of variables.

The question in automated problem solving basically is how to generate nets from enclosements
of a probed net those enclosements being in such a relation with the enclosements in the
conceptual nets that the particular relation is invariant under that generating transformation i.e.
preserves invariability under class-rewriting. Therefore in the next three chapters we handle an
idea of automated problem solving, as formal inventiveness. In problem solving, an essential
thing is to see over details, and that is the task we next grip ourselves into by describing ideas
such as partitioning nets by RNS’s and a connection between partitions by introducing the
abstraction relation. We concentrate to construct TD-models for formulas of jungle pairs by
conceptualizing ground subjects and then reversing counterparts of existing TD-solutions back
to ground level. Then we widen the solution hunting by classifying intervening TDG-
derivations. Finally we formulate abstract quotient algebra based on congruence class rewriting

operations.

42

2. S Inventiveness

2.1. Recognizers and Languages

Definition 2.1.1 RECOGNIZER and RECOGNITION. Let A and B be sets and let a: A — B be a
binary relation and A" a subset of B. We define recognizer A such that A = (a,A") entitling o a
recognizer relation and A" @ final set . Element of A, S (probed object), is said to be recognized by
recognizer A, if saeA”. Langnage £+ is the set of the elements recognized by 4, i.e. a separates

from probed objects those ones, which have property A". As a special case for nets the
recognizer relation can chosen to be yn , where x is a net homomorphism and n a relation
transforming nets to wanted realizations of them, cf. zree automata rules or tree recognizer homomonphisms
Gécseg F, Steinby M (1997), hyper tree recognizer hypersubstitutions Denecke K, Wismat SL (2002).

In general: Set H satisfies transformer T via recognizer A OF 1S & A-model of formula J; denoted
H = 7 if A recognizers 7 —transformation of H, 7 (H). E.g. a recognizer relation

(automorphism) in A giving desired truth value from 7 (H) we can say that H is A-so/ution for T,

if the value given by the recognizer mapping is true. l.e. “validity of Boolean inference”: the nest
of transformer consisting of elementary logical relations (Boolean) and the concerning
recognizer relation being “truth values giving automorphism from truth values of variables in the

carrier net of the transformer”, the final set consequently represents the value “true”or “untrue”.

A transformer can also be RCl and H a factor in it Chang CC, Keisler HJ (1973).
For nets S, T and TD &_in model theoretical notation K=~ (S,T) K_ is named a A-model of
formula (S,T), or pair (S,T) is aA-model of formula & _ (denoted in that interpretation (S,T) |=’A<50),

if recognizer A (e.g. probing the truth values) is recognizing RClI Tc SR . Cf. inferring winning
game graphs Thomas W (1997).

43

Definition 2.1.2. Here we introduce a convenient tool, needed later in the context of abstraction

relation. Let § be an arbitrary index set and for each i,je$ let 6;: Ai — A; be a binary relation
from set A; to set A;. Let A = IT(A;: i€S) and 0 = I1(6; : (i,j) €So) for some SoS§°. Let

a: A — T1(05 : (i,j)€5°) be a binary relation, where aa = I1(6; : (i,j)e 5, elem(i,a) 0; elem(j,a)),
whenever acA. The language recognized by A = (a,) is 8-associated Over So(denoted $3); if in 0
all 0;; are the same, say 0, we speak of 0-associated langnage.

In other words this recognizer picks from among A such elements, the projection elements of

which are pair wise in a relation of set {6;; : (i,]))€So}. Notice that 6-associated language over a

singleton is O-relation itself, if |§| = 2.

2.2 Problem and Solution

Definition 2.2.1. Problem § is a triple (S, A, C), where the subject of the problem S s @ jungle, a set of
mother nets, A 1S a recognizer and /imit demands C (C(8) precise notation, if necessary) is a sample

of prerequisites to be satisfied in recognition processes. TD) (8) is a presolution Of problem &, if
S (8) € L4, thus S (8) being called a solution product, and if furthermore) (8) fulfils the

demands in set C, @) (8) is a solution of 8. E.g. solution @ may be a system, by which from

certain circumstances S, with some limit demands (e.g. the number of the steps in the process)
can be built surrounding S, which in certain state a(S) (for morphism o of a recognizer)
has a capacity characterized by the type of the elements in the final set of the recognizer.

We can describe a solution for a problem as wandering in a net:

1. Starting from a given net node (mother net)
2. to the acceptable net (solution product) (e £4) of the TFG
3. via the right route in the RPG (TDG-solution) (limit demands accomplishments).

Cf. Aceto L, Fokkink WJ, Verhoef C (2001) mothernet = (TD) A.

44

3. Parallel Process and Abstract Algebras

(for Automated Problem Solving)

3.1. Partition RNS and Abstraction Relation

Definition 3.1.1. PARTITION RNS. For each jungle (here c) we define a partition RNS (PRNS)

W of that jungle as a RNS fulfilling conditions (i)-(iii):

() W is manoeuvre mightiness and arity mightiness saving, not instance sensitive,

(i) L(apex(right(r)))\E is a singleton and its element is outside L(c), whenever reg, 0,
and {(left(r),right(r)): reg, p €W} is an injection,

(i) (W) 2 {L(c)NL(c1") = T}

In a special case where the left sides of rule preforms do not overlap each other, {apex(left(r)):

rep, oW} is a partition of jungle c. Furthermore be notified that a characteristically feature of

PRNS’s is that L(cT ")(0™)" is a partition of net ¢ . We say that ¢ " is W-partition result from c.

Observe that for each PRNS there may be several jungles, the PRNS’s of which it is an example
of, the nets of those jungles having apexes of left sides of rule preforms of that PRNS in
different positions. One of the important factors regarding to the partition result is the
independence of reduction ordering Jantzen M (1997), partial matching Korner E, Gewalting M-O,
Kdrner U, Richter A, Rodemann T (1999).

The next characterization clause 3.1 says that the necessary and sufficient condition in order
to be the partition result of a PRNS for a rewrite object is that there is a one-to-one correlation
between the elements of the partition of that rewrite object and the letters of the result in respect

to the cardinality of the positions of the unoccupied arities.

Proposition 3.1. “Characterization Clause”. Let aand b be jungles. Then

(i) (Vv PePar(a)) (3 ne{dp(a): acenc(b), L(a)\E is a singleton }U{ op(t) : teP })

[U(p(P,t) : dp(t) =n,teP) | = I{c: IL(c)NE]| = n, ceenc(b), L(c)\E is a singleton}|,

45

or (i) (L(@)\E) N(L(bI\E) = O,
if and only if
a®” + b,whenever &2'is a PRNS.

PROOF. OQur characterization (i) liable to net placing numbers is originated from PRNS
definition item (iii), because of manoeuvre mightiness and arity mightiness saving feature of

PRNS and characterization (ii) is a subject to definition item (ii). [

Definition 3.1.2. SUBSTANCE and CONCEPT. If for jungles s and t and PRNS T of s there is

equation s "=t , we say that rewrite object s is a substance of t via W, and rewrite result t is the

concept Of s via .

Lemma 3.1. For each jungle c and each PRNS T of ¢
cw (whH =c
PROOF. Straightforward due to non-deleting rules and (iii)-condition in PRNS’s yielding the

partition result is independent of reduction orders. [

“The abstraction relation” to be presented next, is needed in the process to refer to a common
origin via PRNS between the subjects in problems to be solved and jungles presenting known

solutions.

Definition 3.1.3. ABSTRACTION RELATION. The abstraction relation (AR) is such a binary
relation of the pairs of jungles, where for each pair (here (s,t)) there is such substance ¢ and
intervening PRNS 0, and W03 , that

cW; =s and cW, =t.

Concepts s and t are said to be abstract sisters With each other and c is entitled a common origin for s
and t.

Theorem 3.1. “A characterization of the abstraction relation”. Let 0 be the abstraction relation,
and a and b be two jungles. Thus
abb < 6p(a) =3dp(b).

46

PROOF. "<

The proof is executed in a finite case and for nets instead of jungles, but that does not diminish the
power of the proof. Let A;, Az, Bs, B2, and B3 be such jungles that A;UA; is a partition of net a, and

B;UB,UB; is a partition of net b. We can construct substance c¢ for a and b as in the following

figures, distinguished in two different cases depending on the positions of unoccupied arities.
For border .27, in the partition of net a and borders @31, and “3,3 in the partition of net b it is to

be constructed net ¢ and partitions for it, where
(i) A’-partition: A."UA,", where A1 > A4l IA2"I > Aol , and there is bijection
fa: AT UAY — AjUA; such that IL(a")l > IL(fa(a"))l whenever a’e A;"UA,, and
(if) B -partition: B;"UB,"UB3’, where IB;| > B4l , B2 > IB2l and IBs’| > IBsl , and there is bijection
fo: B1'UB,"UB3" — B1UB,UBg such that IL(b") > IL(fy(b"))l whenever

b’e B;"UB,"UB3’, and

(iii) border .271," ““ a subset of the set of the linkages of the nets in B," *“ and borders ©31,” and
83" a subset of the set of the linkages of the nets in A"-partitions * fulfil the equations:
|- 72| = .97l , 198121 = 1981l , |9823°| = |82l , and

(iv) A1, A" and Az, A" are sets of unoccupied arities positioned as shown in cases 1° and 2°.

Straightforwardly we thus can construct PRNS W, and Wy, of net ¢ such that

A;L' ”(DaA: A, Azl TDaA: Ao, Bll o(DbA: B, le °(Db“: B, and Bg' o(Db'\: Bs.

Case 1° Theunoccupied arities are in neighbouring elements in a partition of net b.
Case 2° The unoccupied arities are in such elements of a partition of net b which are totally

isolated from each other.

PROOF. '=":
Let us in contradiction suppose dp(a) # dp(b). If ¢ is a substance for net a, we have dp(C) = dp(a),

because the PRNS between a and c is arity mightiness saving, and from the same reason we are

47

not able to get any concept to ¢ with the cardinality of the unoccupied arities differing from that

cardinality of c. Therefore (a,b) 6. [

Corollary 3.1.1. Any substance and any of its concepts are in the abstraction relation with each
other.
PROOF. Any substance and its concepts have the same amount of unoccupied arities, because

intervening PRNS’s are arity mightiness saving. [

Corollary 3.1.2. The abstraction relation is an equivalence relation.
PROOF. Theorem 3.1. [

3.2. Altering RNS

“Macros” treated in this chapter are needed in process to get solutions for elements in the subject
of the problem in study via known solutions in memories for problems the subject consisting

nets with other elements than in the original subject.

Theorem 3.2. “Altering macro RNS-theorem”. Let &7 be a RNS, nonconditional for the sake of

simplicity, let t be an arbitrary jungle and T a nonconditional PRNS of t. Then there is such

RNS 2z, and such a PRNS W, of t<¢" that there is in force an implicit equation of first order
for unknown @z, , where @z, is a composer for a linear composition of &7 " :

tW 2, (W) = t ™.
We can also solve unknown RNS ¢ from the explicit equation above for ¢~ with suitable

PRNS W,0f t ©¢”, if PRNS T and RNS @z, are given.

PROOF. Without loosing of generality we present the proof keeping nets as rewrite objects

instead of jungles.

48

1° First we prove the implicit equation.

Let t be an arbitrary net and W be a nonconditional PRNS and ¢ an arbitrary nonconditional
RNS. Let § be such an injection that joins an index element to each rule preforms of any rule,
such that ¢ = {a—Bi: i€3(p)}, whenever e 7' Let us next construct required ©2,, a rule
number altering acro RNS for 22" in regard to W, (thus & being entitled as one of the mwicro
RNS s of “2y).

We denote jungle Go(t, W) = (L(tW"))(W™)". Hereby on the basis of lemma 3.1.3 we achieve

Go(t,W)ms e Par(s), whenever seenc(t). Let us consider rule preform a; —»B; , i€S(p), pe &2

Let c; be the context of a representative in [t] for apex(a;). Next for each i€ 3(p) we define
Qi = {geGy(t,0) : gmapex(a;) # &, gmapex(c;) # J}. For each ieUS(<¢) and each gieQ; we
construct a PRNS of gimapex(ai), say Jg.a, ,» and a PRNS of gimapex(ci), say g, Next we define
the set of conditional demands Cos(0) = “for each ieUS(<7) and each gieQi Fgyq, is applied only
for gimapex(a;) and the application order is: first %o, then W “. We define PRNS

Woa = U(P, U = i€US(7), 0i€Qi , Coa()).
Now let dq, be such a representative of such a net class that (qirmapex(ai))@qiai‘ is the context of
the dg, for (qim\apex(ci))@qiciA. Let 9, be a PRNS of b, ieUS(<#), and

Cop(W) = “for each ieUS(<¢) and each bieBi 9}, is applied exclusively for b in the position

where rule preform ai—bj has transformed it and the application order is: first 9y, then W

be a set of conditional demands. Let us define PRNS

Woe = U(P, VW = 1€US(2), Gi€Qi, Coe(W)), where

Coo(W) = “for each ieUs(<2) and each qieQi g, is applied only for gmapex(ci) and the
application order is: first Fq.c. then W
is a set of conditional demands. Further we define PRNS W, = U(T, UTqUTW @ ieUS(r),

Cob(W), Coc(TW)). Now we can give for the first rule preform application desired RNS

49

Riny = 1A " —>dg; , apex(ai)Woa —{apex(b)Fp, ": bieBi} : gieQi}, ieUS().
Now we obtain
tW" Ay, (W1 = t (& >Bi) , ieUS(2), because 9", ieUS(7#), are manoeuvre
mightiness saving. In the next phase we continue the process for net t " ¢ imo“(%f)o'l)“ and
obtain t 10" “7i, " (W) " Wo" Ajy, " (017) " = t (& —Bi) (8 —>B;), where i,jeUs(¢), and
P, and Wy are constructed for net t W~ &7y, " (W, ")~ analogously with i, and W, for t.

The continuation of that process concludes our proof for the implicit part of the theory.

2° Now we are ready to move to prove the explicit interpretation of our equation. Let us

denote ¢ = {oi—B; : 1€S5(p)}, whenever pe z,. Now we have W and 27, given. For each
ieUs(2z,) let 9p. be such a PRNS via which each Bie®; is a concept. We construct a set of
conditional demands Cop(W) = “for each ieUS(“;) and each Biedi Ty, is applied exclusively for
Bi in the position where rule preform a;—f; has transformed it and the application order is: first
P, then . Further we define PRNS 10, = U($5,UT0 : i€US(7;,), Cop(T0)), and give

7= {ai(0™) "> {Bi(9p,) "1 BieBi}}. Now we can proceed as in 1°. [

It is worthy to observe that any macro/micro depend only on its micros/macros respectively and
on the intervening PRNS’s, but not on the rewrite objects which might contain large number or

even unlimited number of places for redexes of rules in micros.

3.3. Parallel Process and the Closure of Abstract Languages

Definition 3.3.1. Let S be an arbitrary set and for each i,jeS let 0;; be the abstraction relation,

and let

0 = I1(05 : (i,j) €9), thus B-associated languages is called S-abstract language.

50

Definition 3.3.2. MACRO and MICRO TD. Let & be a set of RNS’s and &_a TD over &

(here singleton set of RNS’s and its element are equalized). We define a acro TD of K_in regard
to set ##°of interacting PRNS’s, denoted R g-, for which R 4= R(% — 9, 1 Re@, WeW?),
where 27, is a macro RNS for 27 in regard to W. We say that R_ is a micro TD of R _4-, and
denote it (R_s) -1 .

The following “parallel”-theorem, one of the direct consequences from “altering macro RNS”-
theorem, describes the invariability of the abstraction relation or the closures of abstract
languages in class transformation relations, and taking advantage of the equation of “altering
macro RNS”-theorem it gives TD-solutions for any problem each mother net of the subject of
the problem is an abstract sister to a net which is a mother net of the subject of a problem TD-
solutions of which are known. Cf. cass rewriting or confluence modulo Jantzen M (1997), or TD with
possibly freely chosen rules in RNS’s as action cf. sizulation (Baeten JCM, Basten T (2001); van
Glabbeek RJ (2001)), bisimilarity Aceto L, Fokkink WJ, Verhoef C (2001). It is worth to mention
that there is close connections to game theories, inferring winning game graphs Thomas W (1997),
bisimulation equivalence Burkart O, Caucal D, Moller F, Steffen B (2001), representation changes,
abstraction and reformulation in artificial intelligence (Zucker J-D (2003); Holte RC, Choueiry
BY (2003)).

Theorem 3.3. “ Parallel theorem ” . Let ©7' be a RNS, 0 the abstraction relation, a and b two
such jungles that a6b, W, and W, two PRNS’s of such net c that a is a concept of ¢ via W, and b

a concept of ¢ via Wy . Then we have a valid confluence condition regarding 6 as follows:
1° a0 b(Dp,)0,
and
2° atiy,” 0 boy, "
We call & and (%2 4,1)p, paralle/ With each other, and on the other hand consequently 27, and

A+, are also parallel with each other, pairwise preserving 0-classes in derivations.

o1

3.4. Abstract Algebras

Lemma 3.4.1. All nets in any denumerable class of the abstraction relation have the shared

substance (the cenzre of that class).

PROOF. Let 0 be the abstraction relation and let H be a denumerable 6-class. Each substance and
its concepts are in the same 6-class in according to corollary 3.1.1. Because H is an equivalence
class being due to corollary 3.1.2, all substances in H are in 0-relation with each other. Repeating
the reasoning above for substances of substances and presuming that H is denumerable we will

finally obtain the claim of the lemma. [

Lemma 3.4.2. Let 0 be the abstraction relation. Furthermore let 22" be a RNS, and let Q be a
distinctive denumerable 6-class with ¢ being its centre. In addition we define a set of macro
TD’s:

R={ %, WisaPRNS of ¢ }.

Therefore

UQ®R 0) =c(# "U2)0, where 7 is a trivial TD.

PROOF. Because Q is distinctive, for each PRNS W of ¢ ©7, has redexes exactly in one net of
Q and the other nets in Q are in IRR(%7,), our Parallel theorem yields Q%25 < c(2 " U 9)0.
Because 0 is an equivalence relation, we get Q74,0 = ¢(<¢ " U 9)0 and further

QR = (&4 ~U9)0. [

Theorem 3.4. “Abstraction closure-theorem”.

Let A be the set of the denumerable 0-classes, &_ is a set of RNS’s and
& = U({ 7> wisaPRNSofc}: 2e R_, cis the centre of Q, QeA)

be a union of macro TD’s liable to A-classes. Then if 8 is the distinctive abstraction relation, pair

(A,&®) is an algebra, named abstract algebra OF net class rewriting algebra.

52

PROOF. Lemma 3.4.2 yields our claim, because our presumption for the abstraction relation
yields each macro TD set { &2,,* : W is a PRNS of ¢ } in &2 is matching exactly one 6-class, and

because the construction of macro yields for each center ¢ of A equation

|cW” 244, | = |c &2 "] and therefore consequently for each (QeA) QX is denumerable. [

Corollary 3.4. Parallel and Abstraction closure theorems are valid also in cases where the micro
RNS is actually a general TD over a set of them and the intervening PRNS is a TD over a set of

them as set in definition 3.3.2 (micro - macro TD).

In the next chapter we generalize the idea of PRNS to CRNS, “the cover RNS” where left sides
of rule preforms are allowed to match apexes of right sides, and we study how nets are changed
under TD’s over CRNS’s, and afterwards turned to be expressed by TD’s over PRNS’s of those
rewrite objects. CRNS’s are important in expanding processes to search existing solutions in
memory, the subjects of which being in the abstraction relation with the subject of the problem

given to be solved.

45 Tyee wise Prablem Solving Regarding to Intervening RNS s

4.1. Cover RNS

In the following we are searching solutions for problems the mother nets having been built up by
certain type of parts (elements in covers), this requirement is embedded in cover RNS’s,
devoting CRNS as an abbreviation for that particular type of RNS. The apexes of the left sides
of the rules in RNS’s in known TD (e.g. the catenation closure of RNS’s) may not be elements
in any partition of the mother net of the problem studied, but in some more general cover.
Furthermore we expand studies of RNS’s possessing multidimensional rules (G-RNS). The

relations between PRNS and GCRNS are especially in focus. We construct generalized

53

macro/micro (GMA/GMI) TD for GCRNS. Abstraction relation 6 is then defined as before
except PRNS is replaced with different variations of GCRNS.

Definition 4.1.1. For each relation A we define re/ation RNS of A, RNS(X), such that
RNS(X) = {s—T :seDom(}A), T = sA}.

Notice that in general there is in force equation (RNS(k))’l = RNS()ﬁ).

Definition 4.1.2. COVER RNS. RNS 77 is a cover RNS (CRNS) of jungle s, if
it fulfils conditions (i)-(v):

(i) <7 is manoeuvre mightiness and arity mightiness saving, not instance sensitive,

(i) L(apex(U(right(22))))\E and set L(s) are distinct with each other,

(iii) There is such jungle s” for which s<enc(s”) and
AR) 2 {L(S")NL(S 2 ") = &} (totally changing the ranked letters of S) and
each rule preform of ©#2 hasaredex ins’,

(iv) {(left(r),right(r)) : rem, we 22} is an injection,

(v) the right side of each rule preform of ©# is a singleton.

Be notified that s itself may not possess any redex for CRNS. The set of all CRNS’s of jungle s
is denoted CRNS(s). Observe that PRNS’s are examples of CRNS’s. We say that s&¢” is

R -cover result for s.

Proposition 4.1.1. “Characterization Clause”. Let a and b be two distinct jungles. Then

dp(a) = 8p(b) < there is such CRNS ¢ that azz "= h.

PROOF. “<": CRNS is arity mightiness and manoeuvre mightiness saving, and therefore in the
rewrite objects for CRNS the cardinality of the set of the outward linkage connections of the
redexes is not changing in derivations.

PROOF. "'=": Choose & = {a—b}. [

54
Next we concentrate to make notions adequate to differentiate PRNS and CRNS.

Clearly CRNS is a genuine generalization of PRNS, because PRNS’s do not allow ranked letter
mightiness increase and redexes are limited to inside of rewrite objects and genuine overlapping
between left and right sides of the rules are excluded.

Because a CRNS rule may have more than one ranked letter in the right side with e.g.
different number of inside links within the right side than in the left side, then the family of the
unoccupied arity sets of the ranked letters in a rewrite result may deviate from the family of the
unoccupied arity set of any partition of the corresponding rewrite object and therefore a CRNS

result may not be derived from the same rewrite object by any PRNS.

Proposition 3.1 and the greater expansive nature of CRNS compared to PRNS raise the question:
For which jungle a and CRNS ¢ of it there is such PRNS T of a that a2z "= aW"? The next

proposition gives an answer.

Proposition. 4.1.2. Lett be an arbitrary jungle. Let 22 be a /efi-right distinct CRNS of t (that is: for
each rule preform r apex(left(r)) and apex(right(r)) are distinct from each other), and for each

rule preformr in 27" let
(3 PePar(apex(left(r)))) (Vne {dp(a) : acenc(apex(right(r))), L(c)\E is a singleton}u {op(t) : teP})
[U(p(P.}) : dp(t) =n, teP)I=1{c : IL(c)NEI = n, ceenc(apex(right(r))),L(apex(right(N))\Z is a singleton}l.

Hence there is such PRNS W that to2 " =t10".

PROOF. We apply characterization proposition 3.1 upon the pairs of the left-right sides of the
rule preforms in 22 Being due to our presumptions for the rules of 22 proposition 3.1 yields that
for each rule preform r in 22 there is such PRNS T, that apex(right(r)) is W,-partition result for
apex(left(r)), furthermore we require that all sets L(right(0,)), rew, weoz, are distinct from

each other. By choosing W = U(Wr: rew, wet, € ={d(Wy): rewm, we®'}) we’ll get a desired

PRNS, because 2" is left-right distinct (apex(left(<#)) being a subset of a partition of t). [

55

In the following definition by generalization we give new types of RNS’s relating to the types of
PRNS and CRNS.

Definition 4.1.3. GPRNS and GCRNS. GPRNS is RNS which is defined as PRNS but the

condition “manoeuvre mightiness saving” is replaced with demand “not manoeuvre deleting and
the right sides of the rule preforms are allowed to be also jungles instead of only nets”, and
GCRNS is RNS which is defined as CRNS with the above replacement.

Clearly we can generalize theorem 3.2 to be valid also for GPRNS in addition to PRNS.

Proposition 4.1.3. Let ©¢'be a GCRNS of jungle a. If the right sides of the rule preforms among
the rules in ¢ are distinct from each other (we say 7' is distinct from right sides) (reserving the
symbols C4RNS for CRNS and GC4RNS for GCRNS in this respect), then

an”~ w1 =a,

If <" is not distinct from right sides, then we have a < az# "~ & ™",

PROOF. GC4RNS is not manoeuvre deleting and is totally changing the ranked letters in rewrite
objects (condition (iii) in the definition of CRNS). []

Next in the following chapter we prove “Altering Macro RNS”-theorem 3.2 generalized to deal
also with the wider intervening RNS-type, cross colouring RNS, and in order to extend problem
solving to fit also to that intervening type, a characterization of abstraction relation regarding

that type is introduced.

56

4.2. Generalizing Altering Macro RNS Theorem

Before going to the next theorem we widen notion CRNS embedding it into general RNS’s at

overlapping sections between left and right sides of rule preforms.

Definition 4.2.1. CROSS COLOURING RNS, CLCRNS. Let W be a RNS. For each net r we
define relations OL, from pairs (s,%¢) to nets, where s is a rule preform in W and 27" is a

GC4RNS recursively:

OL((s, 7) = U((apex(left(s)) mapex(r)) &@s"),

OL((t, 1) = U((apex(left(t)) mOL(s, 72s)) “21).

Notice that OL, may not be any mapping due to its potentiality to possess multi-images. We say
that W0 is a cross colouring RNS in respect to net ¥, CLRNS(r), if OL(t, 22%) is an enclosement of
apex(right(t)), whenever apex(left(t))mOL(s,#s) # & for some s (OL(t, ©71) thus entitled a

coloured jungle Whereas @2t 1S a colonring GCRNS of 1 in respect to r). If there is such a r-

embedding net t that PI(U(apex(left()))mt) e Par(t), we say that CLRNS(r) W is zoz4.

Definition 4.2.2. MACRO AND MICRO IN REGARD TO GPRNS AND CLRNS.

Let 22 be a RNS and W a nonconditional RNS of type T, Te{GPRNS,CLRNS}. If there is such

a RNS, @z, , and such a nonconditional T-type RNS W, that there is in force an implicit equation
of first order for unknown @2,,", thus <z, being a composer for a linear composition of <7 " :

W™ oy (061" = A"
we call 22, a macro Of @7 in regard to W, indicated by MA(#,70). Consequently we entitle 27 4
micro OF 24, in regard to W, indicated by MI(22,0).

Theorem 4.2.1. Letr be a net and %2 be a RNS. Furthermore let be a nonconditional total

CLRNS(r) and

apr = M(t: reenc(t), Pl(U(apex(left(0)))mt) e Par(t)),

S7

“ the smallest r-embedding net possessing a partition of r by W ”, then such a partition of a, W ",

say P, is achieved via OL,-relations in 7 that P0™" is a partition of r and we can obtain

MI(2¢,0) as well as MA. Notice that in addition in a special case where each colouring

GC4RNS in respect to net r in W can be chosen among the set of GPRNS’s, and if &' is the set

of those GPRNS’s, then U7 is a GPRNS of r.

PROOF. Analogous with altering macro theorem, the set of the colouring GC4RNS’s equating

GPRNS’s for elements of a,-partitions as rewrite objects. [

Definition 4.2.3. MACRO AND MICRO IN REGARD TO TD OVER GPRNS’s AND CLRNS's.

We define wacro MA and nicro M1 in regard to TD over GPRNS’s, respectively over CLRNS’s as
previously in the cases over PRNS’s. Consequently we use notations MA(TD,CLRNS) and

respectively for MI. Furthermore for each TD &_we denote
&% +(T) = {Ra : the elements of %~ are of type T} and
G (T) = {(R_#)w1 : the elements of 9~ are of type T },
whenever Te{GPRNS, CLRNS}. TD’s K_ and (R_ #)#-1 are called paralle/ with each other,

denoted also parallel(R) = (R_#)#-1 or parallel((R_#)wu-1)= K. .

Notice that because CLRNS’s are genuine generalizations of GPRNS’s we have equations

&x.(GPRNS) C 6.(CLRNS) and & (GPRNS) C & (CLRNS).

Theorem 4.2.1 yields the following theorem for more general cases:

Theorem 4.2.2. For each nonconditional W of type T, Te{GPRNS, CLRNS}, and each string
R_over set of RNS’s, there is R, and such of type T RNS W, that

W Ry (o) = R

58

Corollary 4.2.1. The above theorem can be dressed also somewhat more generally:
Let R_ be a micro TD over set of RNS’s and %” a set of intervening nonconditional RNS’s of
type T. Then there is such macro TD of K_, R_w , and such set of reversed T-type RNS’s, %75 ,
that we have commutativity condition

W Rm W™ = R,
and it manifestates a natural transformation between Functors determining parallel rewriting cf.
Theorem 3.3.

Definition 4.2.4. GENERALIZED ABSTRACTION RELATION. The generalized abstraction relation in regard
to type T of intervening RNS, denoted GAR(T), Te{PRNS,GPRNS,CLRNS,GC4RNS,GCRNS}, (in

short abstraction relation of type T) is such a binary relation in the set of the nets, where for each pair

(here (s,t)) there is such net ¢ and intervening RNS 0; and 1, of type T, that
cW;"=s and cwW; " =t.
Nets s and t are said to be abstract sisters of type T With each other, ¢ being a common substance of s

and t. Notice that GAR is a genuine generalization for abstraction relation AR, and that
AR = GAR(PRNS).

Proposition 4.2.1. “A characterization of abstraction relation GAR(CLRNS)”.
Let a and b be two nets and let 6 be GAR(CLRNS). Then

abb < dp(a) =dp(b) .
PROOF. Theorem 4.2.1 and characterization proposition 4.1.1. []

Remark 4.2. Straightforwardly widening the definition for “parallel” to deal with intervening
RNS’s of type GPRNS and CLRNS instead of solely dealing with type PRNS, we clearly have the
results for GAR(CLRNS) as is obtained for AR in corollaries 3.1.1 and 3.1.2, result 3.1, parallel-
theorem, lemmas 3.4.1 and 3.4.2 and theorem 3.4 and finally consequently results concerning

generalizations for TD’s as stated in Corollary 3.4.

Proposition 4.2.2. “Characterization of GAR”.
Let Te{PRNS,GPRNS,CLRNS,GC4RNS,GCRNS} and let s and t be nets. Then s and t are

abstract sisters of type T, if and only if there exist such intervening RNS s and 0; of type T that

59

(3 AsePar(s(0s1) ")) and (3 AcePar(t(0:) ")) there is a bijection between As and A .

PROOF. The right sides of rule preforms must pair wise in both of the intervening RNS’s possess
the same number of different manoeuvre letters liable to cardinality of the bijection between the

related partitions. [

Definition 4.2.5. CONGRUENCE. Let 0 be a relation in the set of the jungles. We say that 0 is a
congruent relation of TD- type T, if there is in force:

abb < ap,0be, whenever @, and @, are TD’s of type T.
Each congruent relation of type T, which is an equivalence relation, is entitled congruence relation of

npe T. The set of all congruence relations of type T is denoted Cg(T).

Theorem 4.2.3. For each TD-type T, GAR(T1)eCg(Tn), m>n, m, n = 1,2,3, where

(T, T2,Ts) = (PRNS,GPRNS,CLRNS).

PROOF. GAR(T) is congruent, because any catenation of TD’s is of the same type as the TD of
the most general type in that catenation and T, is a generalization of T, , if m > n. Proposition

4.2.1 yields the equivalence requirement. [

SYNTAX OF AUTOMATED PROBLEM SOLVING SYSTEM.

The mother net of a given problem is first transformed by an intervening CLRNS to concept net
for which we construct an abstract sister, one of the substances of which has a partition in a
bijection with a partition of a substance of the said concept net. Now the known transducer
renders possibility to construct a macro for it, the parallel counterpart and finally a micro parallel
macro, because the reached concepts guarantee the survival of information of the rules in known
TD’s in the process. By iteration we can reach for our original problem a presolution, which
finally is a desired solution, if the product is in the anticipated language fulfilling the set of limit
demands.

Directly searching a common substance of certain type for a net pair would be substantially
more difficult if even impossible than going through pair (macro,parallel macro) in a case where
either of the nets in said pair is undenumerable regarding to the cardinalities of the sets of their

letters (and actually even if the cardinality of one of them is immense although denumerable).

60

Conclusions

The present study represents a new way to describe knowledge with generalized universal
algebra allowing loop structures so very important in Al languages and which gives an extensive
variety of notional relations between net entities without restricting the semantic use.
Consequently a new syntax model for solving problems defined by said nets is established
flexibly utilizing notional similarities with original problems to further match solutions in
memory data banks additionally creating transducer graphs of solving rewrite systems and
thereof closure system of solving classes.

For the future considerations

Conceptual graphs constitute equivalence classes as the form of elements in a closed quotient
systems, meaning that parallel transformation applied to those classes inevitably drops images
back into the set of those particular classes, which guarantees automated problem solving and
consequently is in the interest of this research. For the reason of “memory hunting” it might be
worthwhile to consider continuing the process of abstract net pair forming in the chain formation
by intervening rewriting then asking if this kind of “catenation strings” form elements in some
closed system. Furthermore type wise use of normal forms in renetting (especially creating new
links by right side substitutions) raises a promising question of the types of the quotient closure
itself.

Acknowledgements

| own the unparalleled gratitude to my family, my wife and five children for the cordial

environment so very essential on creative working.

61

References

Aceto L, Fokkink WJ, Verhoef C (2001) Structural Operational Semantics. In: Bergstra
JA, Ponse A, Smolka SA, editors. Handbook of Process Algebra. Amsterdam: Elsevier.
pp.197-292.

Baeten JCM, Basten T (2001) Partial-Order Process Algebra (and Its Relation to Petri Nets).
In: Bergstra JA, Ponse A, Smolka SA, editors. Handbook of Process Algebra. Amsterdam:
Elsevier. pp. 769-872.

Baeten JCM, Middelburg CA (2001) Process Algebra with Timing: Real Time and
Discrete Time. In: Bergstra JA, Ponse A, Smolka SA, editors. Handbook of Process
Algebra. Amsterdam: Elsevier. pp. 627-684.

Best E, Devillers R, Koutny M (2001) A Unified Model for Nets and Process Algebra.
In: Bergstra JA, Ponse A, Smolka SA, editors. Handbook of Process Algebra. Amsterdam:
Elsevier. pp. 873-944.

Burkart O, Caucal D, Moller F, Steffen B (2001) Verification on Infinite Structures.
In: Bergstra JA, Ponse A, Smolka SA, editors. Handbook of Process Algebra. Amsterdam:
Elsevier. pp. 545-623.

Burris S, Sankappanavar HP (1981) A Course in Universal Algebra. New York:
Springer-Verlag. 276 p.

Chang CC, Keisler HJ (1973) Model theory. Amsterdam: North-Holland Publishing
Company. 554 p.

Cleaveland R, Luttgen G, Natarajan V (2001) Priority in Process Algebra. In: Bergstra JA,
Ponse A, Smolka SA, editors. Handbook of Process Algebra. Amsterdam: Elsevier. pp.
711-765.

Denecke K, Wismat SL (2002) Universal algebra and the applications in theoretical
Computer Science. Boca Raton: Chapman & Hall. 383 p.

62

Diekert V, Métivier Y (1997) Partial Commutation and Traces. Rozenberg G, Salomaa A,
editors. In: Handbook of Formal Languages, VVol.3 Beyond Words. Berlin: Springer-
Verlag. pp. 457-533.

Engelfriet J (1997) Context-Free Graph Grammars. In: Rozenberg G, Salomaa A,
editors. Handbook of Formal Languages, VVol.3 Beyond Words. Berlin: Springer-Verlag.
pp.125-213.

Gabbay DM, Hogger CJ, Robinson JA (1995) Handbook of Logic in Artificial Intelligence
and Logic Programming, Vol 4 Epistemic and Temporal Reasoning. New York: Oxford
University Press Inc. pp. 242-350.

Gécseg F, Steinby M (1997) Tree Languages. In: Rozenberg G, Salomaa A, editors.
Handbook of Formal Languages, VVol.3 Beyond Words. Berlin: Springer-Verlag. pp.1-68.

Holte RC, Choueiry BY (2003) Abstraction and reformulation in artificial intelligence.
Philos Trans R Soc Lond B Biol Sci July 29; 358(1435): 1197-1204.

Jantzen M (1997) Basic of Term Rewriting. In: Rozenberg G, Salomaa A, editors.
Handbook of Formal Languages, VVol.3 Beyond Words. Berlin: Springer-Verlag. pp. 269-
337.

Jonsson B, Yi W, Larsen KG (2001) Probabilistic Extensions of Process Algebra.
In: Bergstra JA, Ponse A, Smolka SA, editors. Handbook of Process Algebra. Amsterdam:
Elsevier. pp. 685-710.

Kdrner E, Gewalting M-O, Kérner U, Richter A, Rodemann T (1999) Organisation of
Computation in brain-like Systems, Neural Networks (special issue) 12 pp. 989-1005, New

York: Elsevier Science.

Meseguer J, Goguen JA (1985) Initiality, Induction, and Computability. In: Nivat M,
Reynolds JC, editors. Algebraic methods in semantics. London: Cambridge University
Press. pp. 459-541.

Miller J (1997) A non-categorical Characterization of Sequential Independence for

63

Algebraic Graph Rewriting and some Applications, Technische Universitat Berlin,

Forschunsberichte des Fachbereichs Informatik, Nr 97-18.

Nivat M, Reynolds JC, editors. (1985) Algebraic methods in semantics. London: Cambridge
University Press. 634 p.

Ohlebusch E (2002) Advanced Topics in Term Rewriting. New York: Springer-Verlag.
pp. 179-242, 327-338.

Rozenberg G, Salomaa A, editors. (1997) Handbook of Formal Languages, Vol.3 Beyond
Words. Berlin: Springer-Verlag. 623 p.

Thomas W (1997) Language, Automata and Logic. In: Rozenberg G, Salomaa A, editors.
Handbook of Formal Languages, VVol.3 Beyond Words. Berlin: Springer-Verlag.
pp. 389-455.

Tirri S, Aurela AM (1989) Solution of nonlinear differential equations with picard iterants
of fixed forms. Int J Comput Math, Vol. 27 Issue 1 pp. 33 — 54.

Tirri S (1990) The congruence theory of closure properties of regular tree languages.
Theor Comput Sci, Vol 76 Issues 2-3, Nov 21, pp. 261-271.

Tirri SI (2009) Cover type controlled graph rewriting based parallel system for automated
problem solving. US Patent Application, non-pending, 20090171876, Jul 2009.

van Glabbeek RJ (2001) The Linear Time-Branching Time Spectrum I. The Semantics of
Concrete, Sequential Processes. In: Bergstra JA, Ponse A, Smolka SA, editors. Handbook

of Process Algebra. Amsterdam: Elsevier. pp.3-100.

Zucker J-D (2003) A grounded theory of abstraction in artificial intelligence. Philos Trans
R Soc Lond B Biol Sci July 29; 358(1435): 1293-13009.

http://www.informaworld.com/smpp/title~db=all~content=t713455451~tab=issueslist~branches=27#v27
http://www.informaworld.com/smpp/title~db=all~content=g770976277
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235674%231990%23999239997%23298016%23FLP%23&_cdi=5674&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0f290aabd8d1d995142b2cfc97a4fb79

