
Paper—Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On …

Automated Data-Driven Hint Generation in
Intelligent Tutoring Systems for Code-Writing:

On the Road of Future Research
https://doi.org/10.3991/ijet.v13i09.8023

Bui Trong Hieu!!"#
Ho Chi Minh City University of Transport, Ho Chi Minh City, Vietnam

Asia e University, Kuala Lumpur, Malaysia
hieu.bui@ut.edu.vn; hieubt@hcmutrans.edu.vn

S.M.F.D Syed Mustapha
Taif University, Taif, Saudi Arabia

Abstract—Introductory programming is an essential part of the curriculum
in any engineering discipline in universities. However, for many beginning stu-
dents, it is very difficult to learn. In particular, these students often get stuck
and frustrated when attempting to solve programming exercises. One way to as-
sist beginning programmers to overcome difficulties in learning to program is to
use intelligent tutoring systems (ITSs) for programming, which can provide
students with personalized hints of students’ solving process in programming
exercises.

Currently, mostly these systems manually construct the domain models.
They take much time to construct, especially for exercises with very large solu-
tion spaces. One of the major challenges associated with handling ITSs for pro-
gramming comes from the diversity of possible code solutions that a student
can write. The use of data-driven approaches to develop these ITSs is just start-
ing to be explored in the field. Given that this is still a relatively new research
field, many challenges are still remained unsolved. Our goal in this paper is to
review and classify analysis techniques that are requested to generate data-
driven hints in ITSs for programming. This work also aims equally to identify
the possible future directions in this research field.

Keywords—intelligent tutoring systems, data-driven hint generation, pro-
gramming exercises

1 Introduction

Programming skills are becoming a core competency for almost every profession
and thus, computer science education is being integrated in the curriculum for almost
every study subject [1]. However, many students find great difficulty with the learn-
ing of programming and it becomes a barrier to their further studies of computer sci-
ence and other disciplines. This difficulty is in large part due to students’ inabilities to

174 http://www.i-jet.org

Paper—Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On …

solve their programming exercises, and this may discourage them to progress further
when help can be obtained immediately. In order to address this problem, various
approaches have been proposed to help students learn solving programming exercises.
Traditionally, face-to-face and one-to-one human tutoring had been the best option for
tutor. However, human tutors are not always available and that’s why computer based
tutoring is developed to provide as an alternative support. Intelligent Tutoring System
(ITS) is an example of computer-based tutoring which is developed emulating the
human tutor [2]. As shown by VanLehn [3], an ITS that is designed with the ability to
understand the coding to a low level of granularity in its advice can be just as effec-
tive as human tutor. ITSs for programming are useful particularly for first year com-
puter science students and non-major students [4]. A current trend in the ITSs for
programming world is to use data-driven techniques to give hints to users of ITSs for
programming [5, 6, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Ac-
cording to [22], ITSs can provide personalized feedback to students automatically, but
they can take large amounts of time and expert knowledge to build, especially when
determining how to give students hints. Data-driven approaches can be used to pro-
vide personalized next-step hints automatically and at scale, by mining previous stu-
dents’ solutions. Instead of taking much time for modeling domain knowledge, the
data-driven approach uses a mass of correct student programs. The data-driven ap-
proach uses correct student solutions in order to construct a solution space that con-
tains all solution states students have created in the past (e.g., in the former semesters
of a programming course). The solution states build many possible paths to correct
solutions [1]. The primary contributions of this paper are 1) a classification of ITSs
for programming, 2) a review of current data-driven hint generation approaches for
ITSs for code-writing and 3) a discussion of the challenges that need to be addressed
before we can expect to generate hints for data-driven ITSs for code-writing.

2 Background

2.1 Intelligent tutoring systems

As we stated above, face-to-face and one-to-one human tutoring is the best tutoring
field. However, it is extremely expensive in terms of both physical and human re-
sources. ITSs are a natural solution that can be used to address this problem, as they
are developed to give personalized feedback and help to students who are working on
problems. The fact the ITSs are formed by three fields: Computer Science, Psycholo-
gy, and Education, as illustrated in Figure 1, in which, (i) Artificial Intelligence (AI)
addresses how to reason about intelligence and thus learning, (ii) Psychology (Cogni-
tive Science) addresses how people think and learn, and (iii) Education focuses on
how to best support teaching/learning [23].

According to [24], an Intelligent Tutoring System (ITS) is a computer system that
provides immediate and customized instruction or feedback to learners. The classical
architecture of an ITS includes the following four components (Figure 2) [25, 26, 27,
28, 65].

iJET ‒ Vol. 13, No. 9, 2018 175

Paper—Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On …

• A knowledge domain model that stores the learning content that is taught to stu-
dents.

• A student model that stores information about the student’s knowledge level, abili-
ties, preferences and needs.

• A tutoring (pedagogical) model, which makes student diagnosis and controls the
tutoring process and make appropriate instructional decisions based on the infor-
mation provided by the other components of the ITS.

• A User Interface that allows the system to interact with the user-learner.

Fig. 1. The development of an ITS using methods and instruments from three different do-

mains

Fig. 2. The typical architecture of an ITS

176 http://www.i-jet.org

Paper—Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On …

This traditional view of ITSs is still very accepted by the ITS community. Howev-
er, recent studies stress functionality over structure [29, 30, 25, 7, 31], describing ITSs
as having two main loops [29]: 1) the inner loop and 2) the outer loop (Figure 3) [25].
The inner loop is responsible for providing personalized feedback, hints, and direct
problem solving assistance to students. The inner loop also assesses students’ compe-
tence and registers it on the student model. Using the information that is obtained
about the student, the outer loop performs task selection.

Fig. 3. ITS Loops

The main task of the outer loop is to select an appropriate programming exercise
for the student. The inner loop is responsible for giving hints on student steps. Here,
we focus on the inner loop. We do not support an outer loop which can create an
overall student model and intelligently choose which programming exercises to show
to the student.

According to [32], research on ITSs has accelerated over the last decade, and
scholarly interest in such systems has never been greater. ITS have been developed
for a wide range of subject domains (e.g., mathematics, physics, biology, medicine,
reading, languages, philosophy, information technology and computer science) and
for students in primary, secondary and postsecondary levels of education.

Founded on several decades of research on human cognition and intelligence, ITS
is now a fast growing area in academia and industry. We now turn our attention to
some cutting-edge research on ITS in a specific learning domain: programming [33].

2.2 Intelligent tutoring systems in the programming domain

In the past four decades, a variety of ITSs for programming have been built to pro-
vide tutoring services for programming exercises. When it comes to functionalities, in
general, ITSs for programming can be classified into five types: 1) curriculum se-
quencing, which constructs for each student an individual learning path, including
individual selection of topics to learn, examples, and exercises; 2) intelligent analysis
of student’s solutions, which focuses more on debugging and error diagnosis for com-
plete student’s program; 3) program debugging support, which helps students learn to

iJET ‒ Vol. 13, No. 9, 2018 177

Paper—Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On …

analyze programs; 4) interactive code-writing problem solving support, which pro-
vides students with personalized assistance in each code-writing problem solving step
and 5) example based code-writing problem solving support which suggests the most
relevant cases or examples to students. In the context of ITSs for programming, for
brevity, we will use the term “ITSs for code-writing” to describe to the ITSs for pro-
gramming for interactive code-writing problem solving support.

2.3 Automated hint generation in ITSs for code-writing

As demonstrated by [1], these non-data-driven techniques are including plan librar-
ies, program transformation, constraint-based models, strategy- based models.
Several recent studies deal with the problem of helping students to learn program-
ming, in particular by giving them useful hints in real time while they are coding.

According to [34], ITSs for code-writing that focus on the process of solving an
exercise are still rare or have limitations: some targeted for declarative programming
[35, 6], which is less flexible because they do not support exercises that can be solved
by multiple algorithms [36, 37], or only support a static, pre-defined process [38].
Furthermore, it often requires substantial work to add new exercises [39] and tutors
can be difficult to adapt by a teacher.

ASK-ELLE [11] is an ITS for code-writing for learning the higher-order, strongly-
typed functional programming language Haskell. They model alternative solution
strategies in the system ASK-ELLE through several model programs (e.g. model
solutions). This system supports the stepwise development of Haskell programs by
verifying the correctness of incomplete programs, and by providing hints. Program-
ming exercises are added to ASK-ELLE by providing a task description for the exer-
cise, one or more model solutions, and properties that a solution should satisfy. The
properties and model solutions can be annotated with feedback messages, and the
amount of flexibility that is allowed in student solutions can be adjusted. The disad-
vantage of this strategy-based approach is that their tutor based on model solutions
provided by instructors/teachers, because they are experts in their field and their solu-
tions serve as examples for students. However, variations to these model solutions are
boundless. Programming exercises are characterized by huge and expanding solution
spaces, which cannot be covered by manually designed hints.

According to [33], this is a vastly challenging problem, mainly because even for
very simple programming tasks there are a multitude of different solution approaches,
both syntactically and semantically. Even if we restrict the semantic aspect (i.e., the
underlying algorithm) to a single one, the syntactic variations of implementing the
algorithm present a daunting task for hint generation. For such programming exercis-
es, ITSs for code-writing are still possible to collect implicit data in terms of solutions
given by students or teachers/experts.

The data-driven approach is particularly useful when it is hard to come up with a
more or less complete set of model solutions. It is worth noting that a range of non-
data-driven techniques can be used to generate feedback and hints for programming
exercises automatically [22].

178 http://www.i-jet.org

Paper—Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On …

As mentioned by [7], data-driven ITS is a subfield of ITS where decision-making
is based on the previous student’s work instead of a knowledge base built by experts
or an author-mapped graph of all possible paths. Successful solutions from the past
can be used to provide feedback and hints for students in the present, which circum-
vents the need to create an expert model. A data-driven tutoring system can be boot-
strapped by experts providing missing data. The data-driven approach has proven to
work well in combination with artificial intelligence and machine-learning techniques
for learning an expert model by demonstration [40].

3 Automated data-driven hint generation approaches in ITSs
for code-writing

New research efforts to tackle broader programming exercises are at a nascent
stage and use previous students’ solutions to a programming exercise to generate hints
for a new student who is working on the same exercise. In recent years, there are two
types of data-driven hint generation in ITSs for code-writing: hint generation has
focused on code correctness and hint generation for code style [41, 42]. In this re-
search work, we focus on the hint generation for code correctness.

3.1 Program synthesis approach

In [39], the author used error models and program sketches to find a mapping from
student current programs to a model solution. Rather than relying on a predefined set
of solutions, he used program synthesis to generate a new solution from the student’s
current program.

However, according to [43], this system requires experts/teachers to define an error
model specific to each programming exercise, and only supports a subset of Python.
In [6], the authors has relied on analyzing the single-line edits made by students be-
tween submissions, and then using those edits to attempt to find a correct solution for
the Prolog program. Those edits could then be used as a source for hints to be sup-
plied to the new student. However, their technique requires a set of test cases to eval-
uate generated programs [12].

Perelman et al. [44] published their study to use all common expressions that oc-
curred in students’ code to create a database of source code that was then used for hint
generation. As mentioned by [7], these techniques have great potential for supporting
new and obscure solutions, but also have the drawback of only working on solutions
which are already close to correct; they all tend to fail when the code has many differ-
ent errors.

Rolim et al. [20] take an example-based approach to learn code fixes as abstract
syntax tree transformations from pairs of incorrect and correct student submissions.
However, while this approach requires far less engineering effort, it may fail to gener-
ate hints, especially when a student’s program is not close to a correct solution [17].

Head et al. [19] introduce a mixed-initiative approach which combines teacher ex-
pertise with data-driven program synthesis techniques. Their work has demonstrated

iJET ‒ Vol. 13, No. 9, 2018 179

Paper—Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On …

how program analysis and synthesis can be used as an aid for a teacher to scale feed-
back grounded in their deep domain knowledge. While scaling up teacher effort, these
systems still require teachers to manually review and write hints for incorrect student
work [45].

Suzuki et al. [45] explore a design space of hints that can be automatically generat-
ed from code transformations learned by program synthesis. Authors’ ultimate goal is
to adapt the strategies that a human teacher employs to automated hints driven by
program synthesis. They identified five types of teacher hints that can also be gener-
ated by program synthesis. These hints describe transformations, locations, data, be-
havior, and examples. Their hints rely on the capabilities of program synthesis tech-
niques to discover code transformations that fix incorrect code. As noted by the au-
thors, while such techniques have been demonstrated on short assignments in intro-
ductory programming classrooms, in the future it may be possible to learn generaliza-
ble fixes for larger, more complex programs.

In [17], the authors present a robust hint generation system that extends the cover-
age of the program synthesis based approach using two complementary techniques. A
syntax checker detects common syntax misconception errors in individual sub-
expressions to guide students to partial solutions that can be evaluated for the seman-
tic correctness. A program synthesis based approach is then used to generate hints for
almost-correct programs. If the program synthesis-based approach fails, a case ana-
lyzer detects missing program branches to guide students to partial solutions with
reasonable structures. According to the authors, their experience suggests several
ways that the system could be improved further.

3.2 Cluster based techniques

Gross et al. [46, 47] used clustering to infer clusters of computer programs and se-
lect the most similar sample solution for hint generation. When the student requires a
hint on how to change her/his code to get closer to a correct solution, it can be com-
pared to a similar example from the cluster, and the dissimilarities between her/his
code and the example code can be contrasted or highlighted in order to help the stu-
dent to improve her/his own solution. As noted by the authors, the challenge with this
approach is the derivation of solution steps from sample complete solutions in order
to reduce the effort for modeling examples.

In [13], the authors introduced an alternative representation of computer programs
for classification and error detection in ITSs, namely execution traces. The trace rep-
resentation can be applied to identify erroneous programs, enabling an ITS to detect
whether a student has finished a task or still needs to continue. However, they con-
cluded that a syntactic representation is necessary when a program does not yet com-
pile or crashes and wherever the high level of abstraction applied by a program trace
is not helpful (e.g. when teaching certain syntactic constructs).

Kaleeswaran et al. [48] propose a semi-supervised technique for feedback genera-
tion. This technique clusters the solutions based on the strategies to solve it. Then
instructors manually label in each cluster one correct submission. They formally vali-
date the incorrect solutions against the correct one. However, as noted by the authors,

180 http://www.i-jet.org

Paper—Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On …

there are many possible directions to improve clustering and verification by designing
sophisticated algorithms.

Gulwani et al. [49] present a novel technique for clustering and repairing introduc-
tory programming assignments. They cluster correct submissions using variable traces
computed for different inputs. Then, a representative submission from each cluster is
selected as a reference solution. An incorrect submission is compared to each refer-
ence solution using variables traces, and some repairs are computed. The technique
provides personalized feedback using the reference solution with the least number of
repairs. However, a problem of this technique is that it requires inputs that are not
easy to provide to trigger all possible errors. Variable traces are compared as a whole,
so it needs a reference solution per any possible variation of a given assignment. Fur-
thermore, the technique is not able to deal with infinite loops and submissions with
multiple methods [50].

3.3 Recommendation approach

In [51], the authors represent a framework that can help students in their coding
process by recommending specific code edits relevant to their codes. They use a pq-
Gram tree edit distance algorithm to match a student’s program to its closest counter-
part in a database of correct solutions, as well as to identify the set of insertions, dele-
tions and relabeling that will directly transform the student’s abstract syntax tree
(AST) into this solution. According to the authors, the disadvantages of this method
involve the following three aspects: AST based program analysis, semantic similarity
of programs and usability testing. With the example-based learning (EBL) strategy,
Chaturvedi [52] presents a framework called Example Recommendation System
(ERS) that is built upon EBL and that uses state-of-the-art mining algorithms in order
to recommend a focused, organized and customized list of worked-out examples with
the overall objective of increasing the likelihood of student success in the ITS’s do-
main. However, as noted by the author, the limitation of algorithms used in this sys-
tem is manual construction of regular expressions (RE) by experts.

3.4 Case-based reasoning approach

Freeman, et al. [53] use a case-based reasoning (CBR) approach, which they call
Abstract Syntax Tree Retrieval (ASTR) to data mine prior solutions contained in a
large dataset. This system requires no prior knowledge of the problem being solved. It
uses CBR and the grammar of the programming language to retrieve a prior solution
with high similarity to a struggling student’s failing submission. The results achieved
by their system are encouraging. However, as noted by the authors, the system con-
tains no information about the programming problem prior to observing successful
submissions. Additionally, their system has no understanding of Python syntax.

iJET ‒ Vol. 13, No. 9, 2018 181

Paper—Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On …

3.5 Hint Factory based approaches

In general, the basic technique in this new line of work is to first represent the pre-
vious student–tutor interactions in the form of a graph. When a new student asks for a
hint, that student’s interaction pattern is matched with some part of the graph and the
student is directed to an appropriate next step that ultimately leads to a solution. It is
not hard to imagine the potential impact of such work on any ITS that teaches pro-
gramming [33].

In [54], the authors designed the Hint Factory to use student problem-solving data
for automatic hint generation in a propositional logic tutor. This approach uses student
data to build a Markov decision process of student problem-solving strategies to serve
as a domain model to automatic hint generation. The Hint Factory operates on a rep-
resentation of a problem called a directed graph where each node represents a stu-
dent’s state at some point in the problem solving process, and each edge represents a
student’s action that alters that state. A solution is represented as a path from the ini-
tial state to a goal state. A student requesting a hint is matched to a previously ob-
served state and directed on a path to a goal state. The Hint Factory approach has been
extended to work in other domains more closely related to programming.

Fossati et al. [55, 56] implemented Hint Factory in the iList tutor that helps stu-
dents learn linked list, a demanding topic in information technology and computer
science education. In [56], the authors also concluded that their tutor produced equiv-
alent learning gains to a human tutor.

Using the Hint Factory approach, Jin et al. [57] use linkage graphs to represent program
states. A linkage graph is an acyclic graph consisting of nodes representing code
statements and directed edges representing the order of the statements determined by
which variables are read and assigned to in each statement. However, in [58], the
author points out that multiple existing student solutions should be available with the
risk that a specific alternative to solve the exercise might not be recognized. On the
other hand, as noted by the authors, the challenge with this method is the determina-
tion of strategies for hint presentation.

In [7], the authors propose a data-driven approach to create a solution space con-
sisting of all possible paths from the problem statement to a correct solution. This
approach borrows heavily from the Hint Factory, but also extends it by enhancing the
solution space, creating new edges for states that are disconnected instead of relying
on student-generated paths.

As demonstrated in [7], ITAP (Intelligent Teaching Assistant for Programming)
makes it possible to generate hints for never-seen-before states, which the original
Hint Factory could not do. ITAP combines algorithms for state abstraction (the pro-
cess of reducing syntactic variability in code states), path construction (determining
which steps a student should take to improve their solution), and state reification (re-
individualizing the resulting edits into personalized hint messages) to fully automate
the process of hint generation. However, as noted by the authors, the path construc-
tion algorithm could be modified to further improve the performance. However, ac-
cording to [51], one major pitfall of AST representations of source code is the loss of
behavioral information.

182 http://www.i-jet.org

Paper—Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On …

Price et al. [12] present a new data-driven algorithm (CTD: Contextual Tree De-
composition), based on the Hint Factory, to generate hints for these broader pro-
gramming exercises. As noted by the authors, a major limitation of this work is the
reliance on a single programming exercise for evaluation.

More recently, Price et al. [59] present iSnap, an extension to the Snap program-
ming environment which adds some key features of ITSs, including detailed logging
and automatically generated hints. They share results from a pilot study of iSnap,
indicating that students are generally willing to use hints and that hints can create
positive outcomes. Hints in iSnap are generated using the CTD algorithm. As noted
by the authors, the study revealed several remaining challenges for the CTD algorithm
and the presentation of iSnap hints.

3.6 Summary

In summary, there has been two board lines of research proposed for data-driven
generating hints in ITSs for code-writing: program synthesis based and Hint Factory
based. However, according to [60], there are two major drawbacks of program syn-
thesis based approaches. First, an instructor must manually provide error models for
each problem. Second, scalability is a big issue, especially with larger programs. In
terms of expert knowledge, the Hint Factory based approaches are suitable for gener-
ating hints in ITSs for code-writing. These approaches only require a two pieces of
expert knowledge to run independently, though this knowledge is kept to a minimum.
The needed data is: (1) at least one reference solution to the problem (e.g. a model
solution) and (2) a test method that can automatically score code (e.g. pairs of ex-
pected input and output). Both model solutions and test methods are already common-
ly created by experts/teachers in the process of preparing programming exercises, so
the burden of knowledge generation is not too large.

4 Conclusion and future research

This study surveys the existing ITSs for code-writing that are solely based on data-
driven hint generation to conclude that they differ from each other in at least the fol-
lowing ways: 1) representation of student’s current code (snapshot of source code, a
set of features, the actual code of program); 2) immediate representation of computer
programs (AST, source code); 3) extracting distinct solutions of a programming exer-
cise (preprocessing); 4) granularity of the code state used; 5) automatically modeling
solution steps and 6) programming language. In the context of data-driven ITSs for
code-writing, despite the research efforts in recent years, however, generating data-
driven hints is still having some problems. In summary, in this work, the gaps we
identified that provide the motivation for future researches are listed below.

1. Representation of the student’s current code. In the context of Hint Factory
based approaches to generate data-driven hint for ITSs for code-writing, a student’s
state corresponds to a snapshot of the student’s current code. However, according
to [61], the snapshots are captured every time students compiled or saved their

iJET ‒ Vol. 13, No. 9, 2018 183

Paper—Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On …

code, but this is not an accurate representation of a unit of work (e.g., a line of
code, a statement of source code)

2. Modeling automatically solution steps from correct solutions. Clearly, in this
literature review, none of the works model automatically solution steps from cor-
rect solutions of a programming exercise. How to model automatically solution
steps from a large number of correct solutions of a programming exercise is an un-
resolved problem.

3. Semantic similarity. At the heart of data-driven ITSs for code-writing is the no-
tion of program similarity. Measuring the similarities and dissimilarities between
programs plays a crucial role in data-driven ITSs. Edit distances have been used as
a measurement for the similarity of programs. Most existing systems represent
programs as abstract syntax trees (ASTs), however, it is known that the tree edit
distance problem is NP-hard. How to extract distinct solutions from a large dataset
consisting of learners’ solution attempts and a sample solution created by teach-
ers/experts efficiently and precisely is an unresolved problem [62].

4. Programming exercises supported by data-driven ITSs code-writing. It is im-
portant that a data-driven ITS for code-writing provides a collection of program-
ming exercises covering an introductory programming course syllabus. Neverthe-
less, these programming exercises are generally stored in proprietary systems for
their own use. According to [63], in general, two issues were detected that can hin-
der the proliferation of ITSs for code-writing: the lack of content standards for de-
scribing programming exercises and to communicate with other ITSs for code-
writing.

5. Programming language. In the context of data-driven ITSs for code-writing, it
can be seen that although ITSs covering many domains have been developed pre-
viously, none of them teach C/C++ programming.

6. Integrate data-driven ITSs for code-writing into curriculum. As noted by Riv-
ers [64], data-driven ITSs for programming has been expanding as a subfield of
ITSs over the past few years, with many different researchers creating new tech-
niques to automatically generate hints. However, most of the systems (including
theirs) have only been evaluated on collected student problem-solving traces, and
the ones that are being tested on real students are implemented in online learning
environments such as MOOCs (massive open online courses), not in individual
classrooms. In the context of curriculum and real classroom in an ITS, this indi-
cates that there is significant room for improvement in the field of data-driven ITS
for code-writing.

5 References

[1] Le.N.T. "Analysis Techniques for Feedback-Based Educational Systems for Program-
ming". 4th International Conference on Computer Science, Applied Mathematics and Ap-
plications, Vienna, Austria, 2016, pp. 141-152.

[2] R. Chughtai, S. Zhang and S. Craig. "Usability evaluation of intelligent tutoring sys-
tem”. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol.
59, no. 1, 2015, pp. 367-371. https://doi.org/10.1177/1541931215591076

184 http://www.i-jet.org

Paper—Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On …

[3] K. VanLehn. "The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Sys-
tems, and Other Tutoring Systems". Educational Psychologist, vol. 46, no. 4, pp. 197-221,
2011. https://doi.org/10.1080/00461520.2011.611369

[4] M. Gomez-Albarran. "The Teaching and Learning of Programming: A Survey of Support-
ing Software Tools". The Computer Journal, vol. 48, no. 2, pp. 130-144, 2005.
https://doi.org/10.1093/comjnl/bxh080

[5] Jin, Wei, T. Barnes, J. Stamper, M. J. Eagle, Matthew W. Johnson, and L. Lehmann. "Pro-
gram representation for automatic hint generation for a data-driven novice programming
tutor”. International Conference on Intelligent Tutoring Systems, 2012, pp. 304-309.
https://doi.org/10.1007/978-3-642-30950-2_40

[6] L. Timotej and I. Bratko. "Data-driven program synthesis for hint generation in program-
ming tutors”. International Conference on Intelligent Tutoring Systems, 2014, pp. 306-311.

[7] K. Rivers and K. Koedinger. "Data-Driven Hint Generation in Vast Solution Spaces: a
Self-Improving Python Programming Tutor". International Journal of Artificial Intelli-
gence in Education, vol. 27, no. 1, pp. 37-64, 2015. https://doi.org/10.1007/s40593-015-
0070-z

[8] P. Thomas and T. Barnes. "Creating data-driven feedback for novices in goal-driven pro-
gramming projects”. International Conference on Artificial Intelligence in Education, ,
2015, pp. 856-859.

[9] P. Thomas and T. Barnes. "An Exploration of Data-Driven Hint Generation in an Open-
Ended Programming Problem”. Educational Data Mining (Workshops), 2015.

[10] P. Chris, M. Sahami, J. Huang and L. Guibas. "Autonomously generating hints by infer-
ring problem solving policies”. Proceedings of the Second ACM Conference on Learn-
ing@ Scale, 2015, pp. 195-204.

[11] G. Alex, B. Heeren, J. Jeuring and L. Binsbergen. "Ask-Elle: an adaptable programming
tutor for Haskell giving automated feedback”. International Journal of Artificial Intelli-
gence in Education, pp. 1-36, 2016.

[12] P. Thomas, Y. Dong and T. Barnes. "Generating data-driven hints for open-ended pro-
gramming”. Proceedings of the 9th International Conference on Educational Data Mining,
International Educational Data Mining Society, 2016, pp. 191-198.

[13] P. Benjamin, J. Jensen and B. Hammer, "Execution Traces as a Powerful Data Representa-
tion for Intelligent Tutoring Systems for Programming”, Proceedings of the 9th Interna-
tional Conference on Educational Data Mining, 2016, pp. 183-190.

[14] F. Paul, I. Watson and P. Denny. "Inferring Student Coding Goals Using Abstract Syntax
Trees”. International Conference on Case-Based Reasoning, 2016, pp. 139-153.

[15] S. Chow, K. Yace, I. Koprinska and J. Curran “Automated Data-Driven Hints for Comput-
er Programming Students”. Adjunct Publication of the 25th Conference on User Modeling,
Adaptation and Personalization, 2017, ACM, pp. 5-10.

[16] T. Lazar, A. Sadikov and I. Bratko “Rewrite Rules for Debugging Student Programs in
Programming Tutors”. IEEE Transactions on Learning Technologies, 2017.
https://doi.org/10.1109/TLT.2017.2743701

[17] M. P. Phothilimthana and S. Sridhara “High-Coverage Hint Generation for Massive
Courses: Do Automated Hints Help CS1 Students?”. Proceedings of the 2017 ACM Con-
ference on Innovation and Technology in Computer Science Education, 2017, ACM, pp.
182-187.

[18] J. Yi, U. Z. Ahmed, A. Karkare, S. H. Tan and A. Roychoudhury “A feasibility study of
using automated program repair for introductory programming assignments”. Proceedings
of 2017 11th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering, Paderborn,

iJET ‒ Vol. 13, No. 9, 2018 185

Paper—Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On …

Germany, September 4-8, (ESEC/FSE’17), 2017, 12 pages https://doi.org/10.1145/310
6237.3106262

[19] A. Head, E. Glassman, G. Soares, R. Suzuki, L. Figueredo, L. D'Antoni and B. Hartmann
“Writing Reusable Code Feedback at Scale with Mixed-Initiative Program Synthesis”.
Proceedings of the Fourth ACM Conference on Learning@ Scale, 2017, pp. 89-98.

[20] R. Rolim, G. Soares, L. D'Antoni, O. Polozov, S. Gulwani, R. Gheyi and B. Hartmann
“Learning syntactic program transformations from examples”. Proceedings of the 39th In-
ternational Conference on Software Engineering, 2017, IEEE Press, pp. 404-415.

[21] B. Paaßen, B. Hammer, T. W. Price, T. Barnes, S. Gross and N. Pinkwart. “The Continu-
ous Hint Factory-Providing Hints in Vast and Sparsely Populated Edit Distance Spaces”.
Journal of Educational Datamining, 2017.

[22] K. Rivers “Automated Data-Driven Hint Generation for Learning Programming”. PhD
thesis, Human-Computer Interaction Institute, School of Computer Science, Carnegie
Mellon University, USA, 2017.

[23] W. B. Park. (2008). Building intelligent interactive tutors: Student-centered strategies for
revolutionizing e-learning. [On-line]. Available: https://libgen.pw/download.php?id=31
3548 [May 20, 2016].

[24] L. R. Maria and T. T. Chen. "Digital creativity: Research themes and frame-
work”. Journal of Computers in Human Behavior, 42, pp. 12-19, 2015.
https://doi.org/10.1016/j.chb.2014.04.001

[25] S. G. Soares and J. Jorge. "Interoperable intelligent tutoring systems as open educational
resources". Journal of IEEE Transactions on Learning Technologies 6(3), pp. 271-282,
2013. https://doi.org/10.1109/TLT.2013.17

[26] W. D. Samanthi. "Intelligent tutoring system for learning PHP". PhD thesis, Queensland
University of Technology, Australia, 2013. [On-line]: Available: http://eprints.qut.edu.au/
63202/1/Dinesha%20Samanthi_Weragama_Thesis.pdf. [Feb. 12, 2014].

[27] H. Budi. "Incorporating anchored learning in a C# intelligent tutoring system". PhD thesis,
Queensland University of Technology, Australia, 2014. [On-line]: Available:
http://eprints.qut.edu.au/78834/1/Budi_Hartanto_Thesis.pdf. [Dec. 12, 2014].

[28] C. Konstantina and M. Virvou. (2015). Advances in Personalized Web-Based Education.
pp. 1-24.

[29] V. Kurt. "The behavior of tutoring systems," International journal of artificial intelligence
in education, 16(3), pp. 227-265, 2006.

[30] G. Alex. “Ask-Elle: a Haskell Tutor”. PhD thesis, Open Univeristy, Utrecht University,
The Netherlands, 2012. [On-line]: Available: http://www.botkes.nl/wp-content/up
loads/HaskellTutor.pdf. [Dec. 20, 2013].

[31] R. Vasile and D. !tef"nescu. "Non-intrusive assessment of learners’ prior knowledge in di-
alogue-based intelligent tutoring systems". Journal of Smart Learning Environments 3(1),
2016.

[32] J. C. Nesbit, Q. L. A. Liu and O. O. Adesope, "Work in Progress: Intelligent Tutoring Sys-
tems in Computer Science and Software Engineering Education," Proceeding 122nd Am.
Soc. Eng. Education Ann, 2015.

[33] M. T. Irfan and V. N. Gudivada. (2016). Handbook of Statistics. [On-line]. Vol. 35. Avail-
able: [May 25, 2016]. https://doi.org/10.1016/bs.host.2016.07.008

[34] H. Keuning, B. Heeren and J. Jeuring. "Strategy-based feedback in a programming tutor,"
Proceedings of the Computer Science Education Research Conference, 2014, pp. 43-54.

[35] J. Hong. "Guided programming and automated error analysis in an intelligent Prolog tu-
tor". International Journal of Human-Computer Studies, 61(4), pp. 505-534, 2004.
https://doi.org/10.1016/j.ijhcs.2004.02.001

186 http://www.i-jet.org

Paper—Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On …

[36] J. R. Anderson and E. Skwarecki. "The automated tutoring of introductory computer pro-
gramming". Communications of the ACM, 29(9), pp. 842-849, 1986.
https://doi.org/10.1145/6592.6593

[37] P. Miller, J. Pane, G. Meter and S.Vorthmann. "Evolution of novice programming envi-
ronments: The structure editors of Carnegie Mellon University". Journal of Interactive
Learning Environments 4(2), pp. 140-158, 1994. https://doi.org/10.1080/104948294
0040202

[38] W. Jin, A. Corbett, W. Lloyd, L. Baumstark and C. Rolka. "Evaluation of guided-planning
and assisted-coding with task relevant dynamic hinting". International Conference on In-
telligent Tutoring Systems, 2014, pp. 318-328. https://doi.org/10.1007/978-3-319-07221-
0_40

[39] R. Singh. "Accessible Programming using Program Synthesis". PhD thesis. Massachusetts
Institute of Technology, USA, 2014. [On-line]: Available:
http://people.csail.mit.edu/rishabh/papers/rishabh_thesis.pdf. [Dec. 30, 2015].

[40] Heeren, B., & Jeuring. “An extensible domain-specific language for describing problem-
solving procedures”. Internet: http://www.cs.uu.nl/research/techreps/repo/CS-2017/2017-
007.pdf, Jul., 2017 [Aug. 23, 2017]

[41] Choudhury, R. R., Yin, H., & Fox, A. “Scale-Driven Automatic Hint Generation for Cod-
ing Style”. International Conference on Intelligent Tutoring Systems, 2016, pp. 122-132.

[42] Wiese, E. S., Yen, M., Chen, A., Santos, L. A., & Fox, A. “Teaching Students to Recog-
nize and Implement Good Coding Style”. Proceedings of the Fourth (2017) ACM Confer-
ence on Learning@ Scale, 2017, pp. 41-50.

[43] Terman, S. “ GroverCode: Code Canonicalization and Clustering Applied to Grading”,
Phd thesis, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, US, 2016. [On-line].
Available: http://up.csail.mit.edu/other-pubs/seterman-thesis.pdf. [Oct. 10, 2016].

[44] Perelman, D., Gulwani, S., & Grossman, D. “Test-driven synthesis for automated feedback
for introductory computer science assignments”. Proceedings of Data Mining for Educa-
tional Assessment and Feedback (ASSESS 2014), 2014.

[45] Suzuki, R., Soares, G., Glassman, E., Head, A., D'Antoni, L., & Hartmann, B. “Exploring
the Design Space of Automatically Synthesized Hints for Introductory Programming As-
signments”. Proceedings of the 2017 CHI Conference Extended Abstracts on Human Fac-
tors in Computing Systems, 2017, pp. 2951-2958. https://doi.org/10.1145/302706
3.3053187

[46] Gross, S., Mokbel, B., Paassen, B., Hammer, B., & Pinkwart, N. “Example-based feedback
provision using structured solution spaces”. International Journal of Learning Technology
10, 9(3), 248-280, 2014.

[47] Gross, S., Mokbel, B., Hammer, B., & Pinkwart, N. “How to select an example? a compar-
ison of selection strategies in example-based learning”. International Conference on Intel-
ligent Tutoring Systems, 2014, pp. 340-347. https://doi.org/10.1007/978-3-319-07221-
0_42

[48] Kaleeswaran, S., Santhiar, A., Kanade, A., & Gulwani, S. “Semi-supervised verified feed-
back generation”. Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 739-750. https://doi.org/10.1145/295
0290.2950363

[49] Gulwani, S., Radi#ek, I., & Zuleger, F. “Automated Clustering and Program Repair for In-
troductory Programming Assignments”. arXiv preprint arXiv:1603.03165, 2016.

[50] Marin, V. J., Pereira, T., Sridharan, S., & Rivero, C. R. “Automated Personalized Feed-
back in Introductory Java Programming MOOCs”. Data Engineering (ICDE), 2017 IEEE
33rd International Conference on, 2017, pp. 1259-1270.

iJET ‒ Vol. 13, No. 9, 2018 187

Paper—Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On …

[51] Zimmerman, K., & Rupakheti, C. R. “An Automated Framework for Recommending Pro-
gram Elements to Novices (N)”. Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on, 2015, pp. 283-288.

[52] Chaturvedi, R. “Task-based Example Miner for Intelligent Tutoring Systems”. Doctoral
dissertation, University of Windsor, Windsor, Ontario, Canada, 2016. [On-line]. Available:
http://scholar.uwindsor.ca/etd/5790/. [Nov. 20, 2016].

[53] Freeman, P., Watson, I., & Denny, P. “Inferring Student Coding Goals Using Abstract
Syntax Trees”. International Conference on Case-Based Reasoning, 2016, pp. 139-153.

[54] Barnes, T., & Stamper, J. “Toward automatic hint generation for logic proof tutoring using
historical student data”. International Conference on Intelligent Tutoring Systems , 2008,
pp. 373-382. https://doi.org/10.1007/978-3-540-69132-7_41

[55] Fossati, D., Di Eugenio, B., Ohlsson, S., Brown, C., Chen, L., & Cosejo, D. “I learn from
you, you learn from me: How to make iList learn from students”. Proceedings of the 2009
conference on Artificial Intelligence in Education: Building Learning Systems that Care:
From Knowledge Representation to Affective Modelling, 2009, pp. 491-498.

[56] Fossati, D., Di Eugenio, B., Ohlsson, S. T. E. L. L. A. N., Brown, C., & Chen, L. “Data
driven automatic feedback generation in the iList intelligent tutoring system”. Technology,
Instruction, Cognition and Learning, 10(1), 5-26, 2015.

[57] Jin, W., Barnes, T., Stamper, J., Eagle, M. J., Johnson, M. W., & Lehmann, L. “Program
representation for automatic hint generation for a data-driven novice programming tutor”.
International Conference on Intelligent Tutoring Systems, 2012, pp. 304-309.
https://doi.org/10.1007/978-3-642-30950-2_40

[58] Keuning, H. “Strategy-based feedback for imperative programming exercises”. PhD thesis,
Utrecht University, Utrecht, The Netherlands, 2014. [On-line]. Available:
http://dspace.learningnetworks.org/handle/1820/5388. [Nov 11, 2015].

[59] Price, T. W., Dong, Y., & Lipovac, D. “iSnap: Towards Intelligent Tutoring in Novice
Programming Environments”. Proceedings of the 2017 ACM SIGCSE Technical Symposi-
um on Computer Science Education, 2017, pp. 483-488. https://doi.org/10.1145/
3017680.3017762

[60] Wang, K., Lin, B., Rettig, B., Pardi, P., & Singh, R. “Data-Driven Feedback Generator for
Online Programing Courses”. Proceedings of the Fourth (2017) ACM Conference on
Learning@ Scale, 2017, pp. 257-260.

[61] Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. “Programming
pluralism: Using learning analytics to detect patterns in the learning of computer pro-
gramming”. Journal of the Learning Sciences, 23(4), 561-599, 2014.
https://doi.org/10.1080/10508406.2014.954750

[62] Luo, L., & Zeng, Q. “SolMiner: mining distinct solutions in programs”. Proceedings of the
38th International Conference on Software Engineering Companion, 2016, pp. 481-490.

[63] Queirós, R., & Leal, J. P. “A survey of e-learning content aggregation standards”. Interna-
tional Conference on Web-Based Learning, 2014, pp. 204-214.

[64] Rivers, K. “Designing a Data-Driven Tutor Authoring Tool for CS Educators”. Proceed-
ings of the eleventh annual International Conference on International Computing Educa-
tion Research, 2015, pp. 277-278.

[65] Syed Mustapha, S.M.F.D. “Building Learning System for Content Knowledge and Social
Knowledge”. International Journal of Emerging Technologies in Learning (iJET), 13(01),
pp. 4-22, 2018. https://doi.org/10.3991/ijet.v13i01.6912

188 http://www.i-jet.org

Paper—Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On …

6 Authors

Bui Trong Hieu is a PhD student in School of Science and Technology, Asia e
Univeristy, Kuala Lumpur, Malaysia. He works at the Information Technology Facul-
ty of the Ho Chi Minh City University of Transport, Vietnam.

S.M.F.D Syed Mustapha is a professor in Computer Science Department, College
of Computers and Information Technology, Taif University, Saudi Arabia. His main
research interest is on building intelligent techniques through knowledge modelling
for learning in which he had applied in various domains such as rheology, inorganic
chemistry, social communication and community of practice. He received his PhD
and MPhil from University of Wales, UK and Bachelor of Science (Computer Sci-
ence) from University of Texas, USA.

Article submitted 26 November 2017. Resubmitted 09 May 2018. Final acceptance 11 May 2018. Final
version published as submitted by the authors.

iJET ‒ Vol. 13, No. 9, 2018 189

	iJET – Vol. 13, No. 9, 2018
	Automated Data-Driven Hint Generation in Intelligent Tutoring Systems for Code-Writing: On the Road of Future Research

