
Semantic Based Mapping from XML to Relations

Kamsuriah Ahmad

Faculty of Information Science And Technology,

National University of Malaysia,

Bangi, 43600, Malaysia

kam@ftsm.ukm.my

Reduan Samad

School of ICT

Asia e-University, Malaysia

rs@gmail.com

Abstract— Extensible Markup Language (XML) is s t i l l the

dominant standard for data interchange and data

representation on the web. With large amount of data now

being represented in XML in the web, the question raised is

how to store, index, access and retrieve the information

effectively. Eve n t ho ug h XM L can ex i s t as a data bas e

o n i t s ow n but t he c a pa bi l i ty i s v ery l i mi t ed w hen

co mpa re d w i th s o phi s t i cat e d s t or ag e a nd que ry

a bi l i ty pr o v ide d by ex is t ing re l a t i o nal data bas e .

Now, relational databases are the most widely used technology

for storing XML data, where they store the data efficiently and

with no redundancy because each unit of information is saved in

only one place through normalization step. The process of

transferring XML to relations is called mapping and these

processes occur frequently. There are many approaches available

for mapping XML to relations but the focus are mostly on the

structure. The semantic constraints for XML as expressed in

functional dependencies are being ignored. In this study we

proposed an algorithm for the mapping that is based on the

normalization steps through the functional dependencies.

When compared with the existing mapping approaches, we

proved that our proposed approach is more efficient in terms

of generating relations that satisfies the Third Normal Form

(3NF).)

Keywords- X M L , r e l a t i o n s , s e m a n t i c , s t o r i n g ,

m a p p i n g formatting;

I. INTRODUCTION

The eXtensible Markup Language (XML) has since 2009
emerged as a standard for data representation and interchange
on the web. As the size of XML data grows exponentially in
the web, the pressure is rising on how to manage the data
efficiently. XML is very efficient in supporting other
applications, such as annotating text by comments on the
content or cross- referencing between documents [16]. Thus it
is argued that XML can be effectively used as a database
language, therefore the need for a more efficient database
language for XML arises. On the other hand, relational
databases are already famous for data management in terms of
storing, updating and searching capabilities through it
communication language, SQL. In view of the maturity of this
technology, XML data shall adapt to the way how data has
been managed in relational, hence, relational database is the
best alternatives for managing XML. Therefore, XML needs
to be mapped to relations format and this process is expected

to occur frequently. There are many different ways to map and
many approaches created in the literature [1], [2] especially
considering the flexible nesting structures that XML allows.
The approaches for storing XML data, ranging from using
files to full-fledged database management systems such as
relational, object- relational, object-oriented or native XML
database systems. However, there is no standard for XML
data type and the method to map data from XML to relations
is yet to be defined.

To approach the problem of mapping, the classical

relational database design through normalization technique
that based on known functional dependency concept is
referred. This concept is used to specify the constraints that
may exist in the relations and guide the design while removing
semantic data redundancies. This concept leads to a good
normalized relational schema without data redundancy. To
achieve a good normalized relational schema for XML, there
is a need to extend the concept of functional dependency in
relations to XML and use this concept as guidance for the
design. Even though there exist functional dependency
definitions for XML [3], [4], [5] but these definitions are not
yet considered a standard and still having several limitation.
Due to the limitations of the existing definitions, constraints in
the presence of shared and local elements that exist in XML
document cannot be specified.

To discuss the problem, this paper is organized as follows:

section II discusses issues in mapping XML to relations;
section III explains the proposed algorithm. Section IV
provides a motivating example in the mapping process and at
the end is the conclusion and future enhancement.

II. MAPPING FROM XML TO RELATIONS

The mapping from XML to relations is not an easy task
because the data model of an XML document is
fundamentally different from that of a relational database.
Especially the structure of an XML document is hierarchy
and the XML elements may be nested and repeated, while
relational model is a flat representation of data with tables
and columns. Traditionally dur ing the mapping all XML
data are directly mapped and stored as one universal table in
relational database. It might cause a large number of nested
tables and redundant data in the relations.

255

During the data exchange, XML might come with or
without a schema (Data Type Definition, DTD or XML
Schema). The existence or the absence of a schema greatly
influences the mapping procedure. When the schema of XML
data is not available, a generic storage mapping to relational
databases is used. Normally, XML document can be seen as a
tree model and the mapping is based on the relationship
between the nodes and edges of XML document model. But
when a schema is available, structural constraint information
of an XML document from a schema is used to guide the
mapping design. Recently, studies in the context of integrity
constraint for XML paying particular attention to the class of
keys [6] and functional dependencies [3], [4] as renewed
interest to adopt these constraints in the mapping framework.
The mapping approaches can be divided into three different
categories: (i) Model-based approach, (ii) Structural-based
approach, (iii) Semantic-based approach. Model-based
approach is a mapping that based on path expression in the
XML tree in the absence of schema type. Basically this
approach will traverse the tree and store the path for every
node visited in a table. This approach ignores totally the
semantics aspect of XML. The approaches that fall under this
category are Edge [9], XRel [8] and XPev [7]. Structural-
based approach is a mapping that based on the existence of
type definition such as XML DTD or XML Schema, which
conform to XML document. By analyzing the structural
properties, it then automatically converts a DTD into
relational schemas. The approaches that can be classified
under this category are Inlining [14], LegoDB [13] and
CPI[17]. However these approaches do not take into account
the information about semantic dependencies. Semantics-
based approach is a mapping that based on the semantics such
as in keys, foreign key and functional dependencies both in
the absence or presence of the schema. Some of the proposed
strategies that capture various kinds of constraints are: X2R
[10], ICDE [4], RRXS [11] and Lv&Yan [15]. However these
approaches are not sufficient to generate an optimal
relational presentation of XML data. Therefore a method to
overcome this limitation is proposed.

III. XTOR: A METHOD FOR MAPPING FROM XML TO

RELATIONS

In relational, functional dependencies constraint is useful
for generating optimal schema decomposition thru its
normalization step. Ironically, this constraint is the most
neglected aspect by many researchers as the approach in
model-based and structural-based. Two evaluations studies
[12],[13] on alternative storage strategies indicate that the
shared-inlining algorithm [2] outperforms other strategies in
data representation and performance across different datasets
and different queries when DTD are available. The studies also
indicate that the presence of DTD during the mapping is vital
to achieve good performance and compact data representation
of XML in relational settings across different datasets and
different queries. However, most of the approaches ignore the
existence of semantics as expressed in functional
dependencies; therefore the resulted relational schema may
contain redundancy in the relations. It would be helpful if tools
exist to facilitate the general problem of mapping between
different data formats, taking the semantics of data into

account. To facilitate such mapping we need a language in
which to express transformations and constraints, and the
ability to reason about the correctness of the transformations
with respect to the constraints. Therefore, the purpose of this
paper is to propose a mapping method from XML to relations
that based on given DTD, functional dependencies and
inference rules. The challenging issues that need to be
considered when mapping XML to relations in the presence of
XML functional dependency and DTD are

• How to map all possible structures that may exist in

XML documents to relations.

• How to map the elements that are not involved in XFD.

• How XFD will be used to represent the structure of

DTD.

• How to design XML in its relational representation

when the existing mapping principles cannot be

applied?

• How to adjust the mapping design to guarantee a good

relational representation of XML documents?

• How to preserve the parent-child relationship between

element and its sub-element?

Therefore in this study a transformation language is

developed that is able to extract the semantics information in
XML and preserve it during the transformation. This language
consists of three components: functional dependencies for
XML, inference rules for XML and the mapping function.

A. Functional Dependencies for XML

In relational, functional dependency is used to define that
X determine Y or X->Y. However functional dependencies for
XML is more complicated since we need to deal with the
hierarchical structure of XML and the path expression that can
be used to express XML. Functional dependencies for XML
(XFDs) that we adopt is an expression of the form: (C, Q : X
-> Y), where C is the downward context path which is
defined by an XPath expression from the root of the XML
document, Q is a target path, X is an LHS (Left-Hand-Side)
and Y is an RHS (Right-Hand-Side).

B. Inference Rules

The intention of using inference rules in the mapping is to
create a method on how to infer other legal XFDs that hold in
XML given a set of XFDs. Since functional dependencies can
be used to specify constraints in XML and infer a non-
redundant relational schema for XML. To infer other non-
redundant relational schema for XML is related to studying
implication problem. The result of this study is the ability to
construct a minimal set of XFD, which is a set of all legal XFDs
that hold in XML. These XFDs are necessary and sufficient
condition to consider, if one wants to generate a non-redundant
relational schema for XML. The implication problem is to

256

solve the following: Given a set of XFDs, what others can be
inferred and how? First we need to define that other XFDs
inferred from a given set of XFDs is legal XFDs. However in
the presence of DTD, the implication procedure is much
simpler since the path expression will be computed based on
the path language in DTD. The definition of XFD implication
is defined as follow [18]:

Definition: XFD Implication

An XFD ϕ: X -> Y is logically implied by a set of XFD ∑,

written ∑ |= ϕ, if and only if ϕ holds on every instance that

satisfies all dependencies in ∑, that is, ϕ holds whenever all

XFDs in ∑ hold. �

The problem of XFD implication is typically addressed by
a set of inference rules. These rules are derived in the presence
of well-structured DTD, keys, and DTD cardinality constraints.
The inference rules that are used for this study are reflexivity,
augmentation, transitivity, union, left path expansion, right path
expansion, downward expansion, target-to-context, and
containment [19]. These rules will be used to find all legal set
of XFDs (minimum covers) that guarantee to hold in XML
documents.

C. Mapping Function

The strategy adopted in this study, is to produce a relational

design, which preserves structural and semantic constraints of

the XML data while reduced redundancies. However we have

to deal with DTDs that may contain arbitrary regular

expressions, that can be recursive; also we have to deals with

null values and incomplete relations. All kinds of elements

structure that exists in DTD need to be handled properly and a

method on how to map these structures to relations must be

defined. Since the DTD are built based on the relationship

between element and its sub-element, therefore designing the

mapping method must be based on this relationship. In a DTD

declaration, there are four possible cardinality relationships

between an element e and its sub-elements ei. The

relationships can be described as below:

• “ 1: 1” – (“only operator”): one element e has one and

only one sub-element ei

• “ 1 : N” – one element e has one or more sub-elements ei

• “ 0 : 1” – one element e has either zero or one sub-

elements ei

• “0 : N” - one element e has either zero or more sub-

elements ei

This concept of relationships is very similar with

relational cardinality constraints and is important in database

design. Mapping rules (MR) are proposed to cover all

possibilities in these relationships. The mapping rules that

used in this study are:

MR1: Mapping in the presence of shared-element,

MR2: Mapping in the presence of set-element

MR3: Mapping in the presence of local-element

MR4: Mapping in the presence of keys

MR5: Mapping in the presence of extended simple elements.

MR6: Mapping in the presence of 1:N DTD cardinality

constraints between element e and its sub-element ei

MR7: Mapping in the presence of M:N DTD cardinality

constraints between element e and its sub-element ei .

MR8: Mapping in the presence of IDREF.

MR9: Mapping in the presence of recursive element.

Based on these mapping rules, the mapping method called

XtoR is proposed that has the following steps:

i). Construct the DTD graph and store to D={E1, E2, A, M,

N, r} where E1 is a finite set of complex element types,

E2 is a finite set of simple element types, A is a finite set

of attributes, M is a mapping function from E1 to element

type definitions, N is a mapping function from E1 to a set

of attributes and r is the start symbol.

ii). Using depth-first search strategy traverses the graph

starting from the root

iii). For each e ∈ E1 construct schema trees and determine the
root using root determinations (RD).

iv). At each e node visited, by using inference rules and

mapping rules infer a new legal XFD that can be added

to ∑m, i.e. the list of all legal XFDs.

v). Read a user input set of XFDs F.

vi). For each XFDs in ∑m and F, reduce all redundant XFDs

to Fm, i.e. a minimum set of XFDs.

vii). Map each attribute in Fm to an attribute in FD relational

schema

viii). Generate a 3NF relational schema over the attribute set

according to Fm by creating a relation for the root of the

schema tree and assign the LHS of each FD as the keys

to the relations.

This method is coded into XtoR algorithm as shown in

Figure 1. This algorithm is explained as follows: First the

structural of XML data is captured using DTD graph and

generate the DTD schema, which is the formal description of

XML. The algorithm traverses DTD D graph top-down using

depth-first starting from the root of D (A(e) = r). The output of

this process is an array D that will store all the elements,

attributes and features of DTD. The information that was

stored for each element is

• EName – element name

• ChildElem – a list of child for the element

• NumChild – the number of child for the element

• parent – the parent of the element

• indegree – the number of nodes point to the element

• cardinality – the relationship of the element

• visited – Boolean function to indicate that the

element has been visited

257

Figure 1: The Proposed XtoR algorithm

Based on the information in D, the algorithm generates

schema tree by following the rules described in RD and at the

same time it will generate trivial XFDs ∑m. Constructing

schema tree and generating ∑m are done while traversing the

DTD graph in one parse. The result of this process is a set of

generated schema tree and a set of all generated XFDs ∑m that

guarantees to hold in XML. The schema tree is used to store

the XFD variables and the relational schema is generated

based on this schema tree. The schema trees will posses all the

attributes and features from XML DTD. The structures for

schema tree and XFD are shown in Figure 2.

Figure 2. The Structure for Schema Tree and XFD

While traversing the DTD graph, if the node has more

than one parent, indicated by checking e.indegree > 1 then no

schema tree will be created. Avoiding this checking step will

result in a redundant schema being created. An extra schema

tree is created for recursive and multiple element (element that

has a cardinality of M:N). Function ConstructSchemaTree (a

recursive function) will generate all unique childs (element

that has a cardinality of 1:1) and unique parent (element that

has a cardinality of 1:M). The algorithm then read the given

XFD and stored into F. However only a minimal set of XFDs

is considered, therefore a mechanism is needed to reduce the

number of XFDs. For this reason, finding a minimal set Fm is

proposed. That is to reduce a list of XFDs in ∑m that is

redundant. To the best of our knowledge, this is the first

algorithm for finding a minimum cover for XFDs by inferring

from XML constraints (XFD, DTD, keys and DTD cardinality

constraints).

After a set of Fm is constructed, the final step is mapping

the paths in XFDs to relational attributes in order to produce a

set of relational functional dependencies and a relational

storage for the XML data. The resulted relational schema

preserves the content and the structure information of the

original XML document, removes redundancy as indicated by

the XFDs, and enforced efficiently using relational primary

key constraints. The generated schema resulted from the XtoR

is correct with respect to keys and functional dependencies. In

fact the schema produced is in 3NF, as proved by the

following proposition:

Proposition: Given a mapping σ, an XML document T

conforming to DTD D, and a set Σ of XML FDs that generated

from keys over D, if T |= Σ, then each relation in σ(T) is in

Third Normal Form(3NF).

Proof. To satisfy the Third Normal Form, we need to prove
that each relation is in First and Second Normal Form. Since
attributes of all relations in σ(T) are extracted from attributes
or text nodes in a document, attributes of all relations are
atomic. That is, all relations are in First Normal Form (1NF).
Because of XML FDs are all in the set of Σ, the semantics is in
Σ. All FDs on relational data are in the correspondence Γ of Σ.
We can conclude that each non key attribute in each relation is
functionally dependent upon the primary key of the relation.
That is, all relations are in Second Normal Form (2NF).
According to the process of mapping, a relation is created for
each FD. Therefore, the relations created in step 2 are in 3NF.
Additionally, the relations created in other steps used FD to
describe the property that the values of some attributes of a
tuple (keys) uniquely determine the values of other attributes
of the tuple and the attributes that are not dependent upon the
primary key have been eliminated. That is, these relations are
in 3NF. So, all the relations σ(T) are in 3NF.

IV. MOTIVATING EXAMPLES

Publication dataset [14] as in Figure 3 is used to

illustrate the effectiveness of the proposed method. This

dataset describes the publication that has many books and

papers. Each books and papers contain information about the

authors who published either books or papers. The complexity

of this dataset is the existence of shared-element as shown in

author nodes. The author nodes is appeared under both book

and paper nodes. Based on manual observation to discover the

dependency constraints in the document, three XFDs can be

derived from the Publication set. The XFD1 and XFD2 are

used to express that ISBN and paperID are the keys to book

and paper elements respectively. XFD3 is used to express that

authorID determines the name of author in the whole

document. These set of constraints become an input to the

proposed algorithm (XtoR) and other algorithms under

discussion (RRXS[11] and Lv&Yan [15]).

To evaluate the effectiveness of the proposed

method, an experiment is conducted where the relational

schema generated by XtoR, RRXS and Lv&Yan method is

compared when using Publication dataset as an input. RRXS

and Lv&Yan methods which are under semantic-based

Struct SchemaTree { Struct XFD {

Topnode context

child() target

Key LHS

Keyref RHS

 } }

Algorithm XtoR

Input: A set of XFDs and DTD D

Output: A target relational schema R with constraints C

1. Begin

2. D = ReadDTD(DTD)

3. ∑m, SchemaTree() = ConstructSchemaTree(D)

4. F = ReadXFD (XFD)

5. Fm = MinimumCover(∑m, F)

6. Map each attribute in Fm to FD relational attribute

7. Output R + C

8. End

258

approach are used in the comparison because they h a v e

t a k e n i n t o consideration an XFD in the mapping.

Figure 3. DTD graph, its schema and corresponding XFD

Given the DTD graph, its schema and corresponding

XFD that may exist in the Publication dataset, the relational

schema generated by the three methods are shown in Figure 4.

XtoR method generates a good relational schema for

Publication dataset when compares with the schema generated

by RRXS and Lv&Yan method. The relational schema

generated by RRXS as in Figure 4(ii), produce two

equivalent tables that belong to the same concept which

are Author and Author1 table. The reason for this redundant

creation is that the algorithm did not check the existence of

already created table for the same concept of object (Author),

the algorithm blindly created a new one. These redundant

tables may lead to the update anomaly problems. The method

by Lv&Yan will create two types of tables: based on

structural DTD and based on semantics presented by XFD.

Basically three steps involved in this algorithm: i) using

structural DTD, a separate relation will be created for each

non-leaf vertex and leaf, ii) for each parent-child relation

between two vertexes connected by a * operator, a separate

relation is created, and ii) for each XFD defined over DTD, a

separate relation is created. Based on this algorithm the

resulted relational schema is shown as in Figure 4(iii). As

observed, the F3 table and the Author table are redundant.

These tables are used to describe the same concept of

object (Author), therefore this will lead to update anomaly

problems. For instance if a new author is added to the

publication, both the relations F3 and author need to be

updated for the database to satisfy the constraints. The

relational schema generated by XtoR overcomes the

limitation of these methods by producing a good relational

schema design for XML with no redundant relations. In fact

the schema produced is correct with respect to keys and

functional dependencies.

Figure 4. The comparison of schema generated by XtoR, RRXS and Lv&Yan

V. MOTIVATING EXAMPLES

This paper investigated the problem of how to design a

normalized relational schema for XML data and how to

automate the instance mapping. A new approach called XtoR

is proposed, where when functional dependencies and DTD

were given, redundancy in XML document can be detected and

used for mapping XML to relational. The effectiveness of

XtoR algorithm is evaluated by comparing the resulted

relational schema produced by XtoR with RRXS and

Lv&Yan[15]. The proposed approach is able to generate a

reduced redundancy relational schema when compared with

the other two algorithms. XtoR also able to preserve the

constraints as expressed in functional dependencies. It can be

efficiently operated, automated and eliminates unnecessary ID

caused by Hybrid Inlining algorithm[2]. However this study

had considered only DTD language for XML mapping. Since

XML Schema is widely used as a schema to define the

structure of XML, now there is a need to extend the proposed

algorithm which will consider this schema. Also as an

immediate task, we would like to find efficient algorithm for

the implication problem in the functional dependencies defined

above. Through this study we hope that it will give some

contributions to the database community.

REFERENCES

[1] K. Ahmad, “A comparative analysis of managing XML data in relational

database”. Lecture Notes in Artificial Intelligence LNCS/LNAI 6591,

2011, pp: 100-108.

[2] M. Atay, C. Chebotko, D. Liu, S. Lu and F. Fotouhi. “Efficient schema-

based XML-to-relational data mapping”. Inf. Sys., 3, 2007, pp: 458-476.

<!ELEMENT publication(book*, paper*)>

<!ELEMENT book (ISBN, booktitle, author*)>

<!ELEMENT paper(paperID, title, author*)>

<!ELEMENT author (name)

<!ATTLIST author authorID

XFD1 //book: ISBN -> ε

XFD2 //paper: paperID -> ε

XFD3 //author: authorID -> name

Publication

book paper

authorISBN
paperID title

booktitle

authorID name

**

* *

Book (ISBN, booktitle) Author (authorID, name) Paper(paperID, title)

Book-author(ISBN, aID)

Paper-author(paperID, authorID)

i.Schema generated by XtoR

Book (ISBN, booktitle) Author (authorID, name) Author1(ID,

authorID, name) Paper (paperID, title)

Book-author(ISBN, aID)

paper-author1(ID, paperID, author1.ID)

ii.Schema generated by RRXS

Publication(ID)

Book(ID, ISBN, booktitle, author.ID) Paper(ID, paperID, title,

author.ID) Author(ID, authorID, name)

Publication-book (publication.ID, book.ID)

Publication-paper(publication.ID, paper.ID) Book-author(book.ID,

author.ID)

Paper-author(paper.ID, author.ID)
F1(publication.book.ISBN, publication.book.ID)

F2(publication.paper.paperID, publication.paper.ID)

F3(publication.paper.author.authorID, publication.paper.author.name)

iii. Schema generated by Lv&Yan

259

[3] F. Fassetti and B. Fazzinga, “Approximate functional dependencies for

XML data”. Local Proceedings of ADBIS, 2007, pp: 86-95.

[4] S. Shahriar and J. Liu, “On defining functional dependency for XML”.

International Conference on Semantic Computing, 2009, pp: 595-600.

[5] T. Trinh, “Using transversals for discovering XML functional

dependencies”. Proc. of FoIKS, LNCS4932, 2007, pp:199-218.

[6] P. Buneman, S. Davidson, S., Fan, W., Hara, and C. Tan, “Keys for

XML. In Proceeding of the 10th World Wide Web Conference. 2001, pp.

201-210.

[7] J. Qin, S . Zhao, S . Yang, S., Dou, “ XPEV: A storage model for

well-formed XML documents”. FSKD. LN AI 3613, 2005, pp.360-369.

[8] M. Yoshikawa, T. Amagasa, a n d T. Shimura, “XRel: A p ath-based

approach to storage and retrieval of XML documents using

relational database”. ACM Transactions on Internet Technology,

vol.1, 2001, pp.110-141.

[9] P. Bohannon, J. Freire, J., P. Roy, and J. Simeon. “From XML

schema to relations: A cost-based approach to XML storage”. In

Proceedings of the 18th International Conference on Data

Engineering, pp.64-74. 2002.

[10] Y. Chen, S . Davidson, a n d Y . Zheng, “ Constraint preserving

XML storage in relations”. In Proceeding of the 9th International

Conference of Database Theory, 2002, pp.7-12.

[11] Y. Chen, S., Davidson, C. Hara C., Y. Zheng. “RRXS: Redundancy

reducing XML storage in relations”. In Proceedings of 29
th

.

International Conference on Very Large Data Base, 2003, pp.189-200..

[12] S. A. Amer-Yahia., F .Du., a n d J. Freire. “A c o m prehensive

solution to the XML to relational mapping problem”. In Proceedings

of the 6th Annual ACM International Workshop on Web Information

and Data Management, 2004, pp.31-38..

[13] D. Florescu, and D. Kossman. “A performance evaluation of alternative

mapping schemes for storing XML data in a relational database”. In

Proceedings of the VLDB. 1999.

[14] J.Shanmugasundaram, “Relational databases for querying XML

documents: limitations and opportunities”. Proceedings of the 25th

VLDB Conference, 1999, pp 302-314.

[15] L. Tv. and P. Yan. “Mapping DTDs to relational schemas with semantic

constraints”. Journal of Information and Software Technology vol. 48(4),
2006, pp 245-252.

[16] K. Schewe, “Redundancy, dependencies and normal forms for XML

databases”. Sixteenth Australasian Database Conference ADC Vol 39.

Dobbies G. and Williams H (eds). 2005.

[17] D. Lee, and W.W. Chu, “CPI: Constraint-preserving inlining algorithms

for mapping XML DTD to relational schema”. Journal of Data

Knowledge and Engeering volume 39(1): 2001, pp 3-25

[18] Vincent, M.W. and Liu, J., “Checking functional dependency

satisfaction in XML”. XML Symposiums Lecture Notes in Computer

Science. 2005, 3671, pp 4-17.

[19] K. Ahmad, H. Ibrahim, “Functional dependencies and inference rules for

XML”, Proceedings of International Symposium on Information

Technology. 2008.

260

