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ABSTRACT 

Accurate and timely birth and death registration is crucial for effective policymaking 

and public service delivery. however, Indonesia’s current population administration 

system faces challenges such as centralized registration processes and low public 

awareness, leading to delays and incomplete records. this study explores the use of 

data mining techniques to enhance registration efficiency by analyzing birth and death 

records from Makassar city’s population and civil registration office. using k-means 

clustering, apriori association rules, and c5 decision trees, this research identifies key 

patterns influencing late registrations. the optimal number of clusters of clusters for 

birth and death data is determined as three using elbow and silhouette validation 

methods. the apriori algorithm refines registration data by identifying associations that 

reduce inconsistencies, while decision three analysis highlights critical factors 

contributing to registrations delays. a total 45 decision trees were generated, leading 

to policy recommendation aimed at improving data collection and public compliance. 

this study contributes to ICT governance and public administration by demonstrating 

how data-driven approaches can optimize civil registration service. the findings offer 

actionable insights for policymakers to enhance registration models, reduce delays, 

and improve public accessibility. future research may explorer the integration of deep 

learning models for further automate the registration process and enhance predictive 

accuracy.  
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CHAPTER 1  

INTRODUCTION 

 Background of Study 

The Population Administration System in Indonesia has lasted since 2011. The system 

is Population Administration Information System (SIAK: Sistem Informasi 

Administrasi Kependudukan); It involves the registration of both births and deaths. 

The addition of new data and updates is entered into the SIAK system, which is hosted 

on a decentralized server within the city. Periodically, this information will be 

synchronized with a central server located at the Ministry of Home Affairs 

(Departemen Dalam Negeri Indonesia, 2011). The provisions regarding birth 

registration in the system and making birth certificates are regulated in articles 27 and 

49. Simultaneously, the data of death reports that require families, community leaders, 

or residents to report within 30 days of the incidents is regulated in article 44 of Law 

of the Republic of Indonesia Number 24, 2013. Meanwhile, the steps in government 

programs to improve the birth and death registration rates become the authority of each 

region's civil registration offices. Procedures for registering births and deaths by 

visiting the population service office by bringing birth and death events. This 

procedure has the constraint that the community will only process the document if 

needed at some point in the future, even though the document should be registered 

after the birth and death events occur. This is due to several factors, including access 

to registration centralized in the district capital, making it difficult for people to come 

to the office due to distances and long queues. There is low public awareness of 

reporting births to issue birth certificates; generally, people inform deliveries when the 

child is sick, requires health insurance, and is entering school age (Ritonga et al., 
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2021). Likewise, in reporting death events, death events are generally reported to the 

civil registry office to issue death certificates to withdraw insurance funds or become 

heirs (Adi, 2022). 

 Various efforts to enhance birth and death registration are ongoing. The 

optimization of technology in civil registration aims to achieve more efficient 

outcomes. Simultaneously, technology assumes a critical function in bolstering 

population management services. It has the potential to facilitate inter-agency 

collaboration, expedite registration processes, and streamline procedures. 

Consequently, it's imperative to oversee innovations that harness technology for 

support effectively (Adomako & Nguyen, 2024). However, the involvement of other 

institutions, such as health institutions, in the birth registration process can improve 

birth registration but becomes a dilemma because medical institutions already have the 

primary function of providing health facilities (Siagian et al., 2019). Moreover, 

registering deaths can involve sub-district and village institutions. This will increase 

the number of births and deaths. The Civil Registration Office of Makassar has 

innovated by developing a birth registration system that involves health institutions 

and urban village offices named KUCATA'KI. This innovation makes it easier for the 

people of Makassar to get services from the government and collaborate with related 

parties in the reporting process of some health institutions and every district in the city 

of Makassar (Sulmiah et al., 2022). In addition to these technological innovations, 

efforts to improve birth and death registration are also carried out in the civil 

registration service policy with various activities such as direct services to sub-districts 

and increasing understanding and technical capabilities of civil registration in the form 

of seminars and training. The Three in One Service Program also completes the 

application for a Birth Certificate by including the Family Card and Child Identity 
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Card as program outputs. The program is running well and should be more optimal 

(Malik & Ammar Hadi, 2022). The full potential of discounts offered to holders of the 

Child Identity Card (KUMARA) has not yet been fully realized in terms of quantity. 

The promotion and oversight of this program have not been optimized, requiring 

practical observations and supervision by service providers when serving recipients 

(Wirata et al., 2022). In addition, to ensure the success of the Civil Registration System 

for registering births and deaths, it is crucial to enhance infrastructure through a 

reliable electricity supply, better building facilities, a well-trained workforce, and the 

implementation of an online system with the necessary software installation (Rane et 

al., 2020).  

  Improvements in birth and death registration can be achieved by thoroughly 

understanding the data that has been recorded to date. An analytical approach is 

essential for understanding birth and death data. This necessity is underscored by the 

data mining analysis conducted on civil registration data. use of data mining 

techniques on government data is proven to make better planning and decision-making 

(Musadad et al., 2023). As well as the birth data analysis using the Neural Network 

method emphasizes the need for data mining analysis on civil registration data to 

understand e-governance data better (Desai, 2019). Utilization of birth and death data 

for the development and determination of policies and activities needs to be done to 

increase the number of registered births and deaths. Data recorded for three years can 

be analyzed using data mining tools to find new information that can be used as a basis 

for determining policies for developing birth and death registration systems. The 

utilization of pre-established algorithms and association rules in decision-making 

holds importance for policymakers in public service (Ebenezer, 2019), and the use of 

data mining techniques on civil registry databases to find association rules using the a 
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priori method succeeded in presenting new regulations that can be used for decision-

makers to do the right thing for certain groups of rules that are generated (Musa & 

Ahmad, 2019). This underscores the importance of collecting data for analysis to 

derive association rules that relate to the correlation between the area of residence and 

the timeliness of reporting birth and death events, thereby enabling the precise 

formulation of activities. Beyond identifying specific rules and correlations within 

collected data, it is also possible to categorize the data using relevant and suitable 

criteria. This categorization allows the government to formulate public policies that 

align with the actual situation (Viloria & Lezama, 2019). Data mapping is needed for 

policy adjustments related to increasing birth and death registration, and a policy will 

be adjusted to the characteristics of the existing data clusters. This way, the policies 

taken can be implemented with finances limited to each cluster (Jurun et al., 2017). 

This ensures that improvements to the birth and death registration process are 

implemented based on accurate cluster data. 

  Understanding the characteristics of birth and death data recording, along with 

the factors influencing community registration of these events, is essential. These 

factors may include social, economic, cultural, and geographical aspects that affect 

individual or family decisions to report births and deaths (Yokobori et al., 2021). 

Additionally, the community awareness of the importance of civil registration plays a 

crucial role. In this context, data mining analysis is vital. It can uncover patterns and 

trends that are not immediately apparent, such as specific times of the year when 

registrations are lower or demographic groups that are less likely to report these 

significant events. The insights gained from this analysis can inform government 

strategies, particularly for the population and civil registration office, enabling the 

design of more effective programs and activities. For example, if data indicates low 
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birth registration rates among individuals with lower education levels, the government 

can implement educational programs highlighting the importance of civil registration 

or establish direct service initiatives in hard-to-reach areas. By developing activities 

based on accurate data and thorough analysis, it is anticipated that improvements in 

birth and death registration will increase in the future. This will ensure that every 

individual is officially recognized by the state, a fundamental right of every citizen. 

Enhanced registration can also improve public services, such as health and education, 

as accurate data facilitates more targeted resource allocation. 

 Problem Statement 

Efforts to improve birth and death registration through various activities conducted to 

date are not yet data-driven. Initiatives undertaken without a data foundation may 

hinder the community access to basic rights, such as education, health services, and 

inheritance rights (Yu et al., 2020). Efforts and initiatives aimed at improving birth 

and death registration across various scenarios, geographic areas, and social contexts 

should be formulated based on data, prioritizing the results of data analysis as a crucial 

factor in these endeavors. Current data mining techniques can analyze specific data, 

including civil registration data, more effectively than other data analysis methods 

(Tekieh & Raahemi, 2015). This serves as the foundation for this study to utilize data 

mining analysis methods on civil registration data to: 

i. Birth and death registration are fundamental events that must be recorded by 

the civil registration office. However, many regions in Indonesia, especially 

the city of Makassar, still face challenges in achieving optimal registration 

rates. One of the causes is the lack of understanding of the characteristics and 

patterns of registration in various community groups, which results in efforts 
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to improve birth and death registration being suboptimal. By understanding 

registration patterns in different community groups, service innovations can be 

tailored to these conditions. Additionally, by comprehending the characteristics 

and complex registration patterns, such as changes in population structure, 

migration, or changes in family composition, efforts to improve registration 

based on data can be more effective (Oktaviany et al., 2024). Therefore, a data 

mining approach is employed to categorize birth and death registration data 

using several criteria. This multi-criteria clustering enables the government to 

develop public policies that align with the actual situation (Viloria & Lezama, 

2019). Clustering data based on relevant criteria, including birth and death 

events, child biodata, parental information, and regional demographics, is 

essential. The resulting data clusters can serve as a foundation for formulating 

activities aimed at improving birth and death registration. 

ii. Significant challenges remain in improving the registration of births and 

deaths. Data shows that more than half of births and deaths are reported more 

than thirty days after the event. This phenomenon reflects a gap in public 

understanding of the importance of official registration. Many individuals and 

families believe that obtaining a birth certificate and death certificate from the 

hospital is sufficient, without realizing that official registration at the 

population and civil registration office is a crucial step to ensure legal 

recognition and better access to public services. One approach to improving 

this registration is to understand the associations in the data that influence 

people's decisions to register births and deaths. By applying data mining 

techniques, especially association rule methods, we can identify patterns and 

relationships that exist in civil registration data. The association process is also 


