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ABSTRACT 

The Javanese Eagle is a rare and protected animal in Indonesia, threatened with 

extinction due to its limited population. Conservation efforts in zoos and nature 

reserves are essential to prevent their extinction. One critical aspect of conserving the 

Javanese Eagle is understanding their communication through tweets, which can 

provide insights into their needs and behaviours. This study addresses the problem of 

effectively classifying the Javanese Eagle's vocalizations to aid in their conservation. 

The primary technique involves the use of Improved Mel-Frequency Cepstral 

Coefficients (IMFCC) and Deep Convolutional Neural Networks (DCNN), combined 

to create a robust classification system. Data were collected from zoos and nature 

reserves in Indonesia, used to train and test the models, and then validated by experts. 

Experts validate after the best model is obtained and use new data to test its validity. 

The classification system aimed to distinguish between tweets indicating lack of food 

or drink, normal tweets, and those related to finding a partner. The study compared 

various CNN architectures, including AlexNet and VGGNet, and different 

combinations of training, validation, and test data. The best-performing model, 

VGGNet, was trained with a dataset split into 80% training, 10% validation, and 10% 

testing. During training, the VGGNet model achieved a peak accuracy of 100%, and 

during testing, it attained an accuracy of 99%. The Receiver Operating Characteristic 

(ROC) Curve analysis showed that the 'Normal' category had an area under the curve 

of 0.996, the 'Looking for Partner' category had an area under the curve of 1.000, and 

the 'Looking for Food' category had an area under the curve of 0.996. These results 

demonstrate the effectiveness of the proposed classification system in accurately 

identifying the Javanese Eagle's primary needs. The significance of this study lies in 

its potential to enhance conservation efforts by providing a reliable tool for monitoring 

the Javanese Eagle's well-being. By accurately classifying their vocalizations, 

conservation site managers can better understand and address the eagles' needs, 

improving their chances of survival and preventing extinction. This research also 

contributes to the broader field of bioacoustics and wildlife conservation, offering a 

methodology that can be adapted for other endangered species. 

Keywords: Improved MFCC, deep convolutional neural network, Javanese eagle 

sound, sound classification   
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CHAPTER 1  

INTRODUCTION 

This chapter discuss on the Javanese Eagle whose existence is currently being 

threatened with extinction. In helping to preserve the Javanese Eagle, research is 

needed to identify the needs of the Javanese Eagle. Javanese eagles communicate using 

their tweets. From the tweet, it can be identified the conditions needs of the Javanese 

Eagle. The needs of the identified Javanese Eagle can help in the care of the Javanese 

Eagle. Research that can identify the needs of the Javanese Eagle from the sound of its 

tweets can help care taker provide the bird's needs in real-time. 

The Javanese Eagle (Nisaetus bartelsi) is a rare and protected animal in 

Indonesia. These animals only live a few species globally and are threatened with 

extinction (Karpyn et al., 2020; Lindhout & Reniers, 2020). The Javanese Eagle is one 

of the animals that are conserved in zoos and nature reserves. These birds need to be 

bred to avoid extinction (Rose et al., 2017). Especially in zoos, caretakers need to pay 

attention to the needs of these birds, especially in maintaining a balance in nutrition. 

Balanced nutrition keeps the Javanese Eagle to survive. This Javanese Eagle is a rare 

and endangered species and is currently on the verge of extinction (Putra, 2015). They 

need to be taken very seriously to preserve their existence. One of the threats to the 

survival of the Javanese Eagle is its diminishing habitat. The Kamojang Eagle 

Conservation Manager is also an eagle observer said, all types of eagles in Indonesia 

are almost extinct. Even though in 1990, eagles were protected by the government, 

there are still many who trade eagles illegally (Putra, 2015). 

Javanese eagles can communicate with one another by the sound of their tweets. 

The sound of the Javanese eagle tweet can indicate whether the bird is looking for 

prey, it is in normal condition, or even invites other Javanese eagles to breed. The 
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voice of this tweet is very distinctive and very specific which can be heard (Kettler & 

Carr, 2019), (Berger et al., 2018). 

The chirping sound of this Javanese Eagle can be studied and classified to help 

in the conservation of endangered animals. With the tweets studied by the proposed 

technique and verified by experts, can know the basic needs of the bird especially in 

searching for prey. This study will classify the sound of the Javanese Eagle for the 

benefit of animal conservation. The data from this study were taken from zoos and 

nature reserves in Indonesia and validated by experts. Data in the form of tweets will 

be classified. This research will develop a Javanese Eagle’s sound classification 

technique that will classify the sound of the Javanese Eagle into lack of food or drink, 

knowing the Javanese Eagle in search of a partner, and normal state of bird tweet’s 

through combination of algorithms from Mel-Frequency Cepstral Coefficients 

(MFCC) (Paul et al., 2021) and Deep Conventional Neutral Network (Murat et al., 

2020; Niemi & Tanttu, 2018; Song & Li, 2019; Xie & Zhu, 2019). The results of this 

study can help managers of conservation sites in preserving the Javanese Eagle from 

extinction. 

 Background of the Study 

Information and Communication Technology (ICT) offers various advanced 

techniques leveraged for diverse applications, including conservation efforts. This 

study applies ICT methods to classify and interpret the vocalizations of the Javanese 

eagle (Nisaetus Bartelsi). As a medium-sized eagle from the family Accipitridae, this 

species has seen its population decline due to habitat loss from volcanic eruptions and 

illegal hunting (Utami, 2021). Understanding and meeting the nutritional and 

environmental needs of these eagles are crucial for their conservation, particularly 

given their limited reproductive rate of one to two eggs per year. 
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Signal processing, particularly using Mel-Frequency Cepstral Coefficients 

(MFCC), plays a pivotal role in extracting distinctive features from sound signals 

(Abdul & Al-Talabani, 2022). MFCC transforms sound waves into parameters that 

encapsulate the characteristics of audio files, facilitating their analysis and 

classification. This research also improved the MFCC into IMFCC which further 

refines feature extraction by creating detailed feature vectors that capture the nuances 

of voice signals. 

The developed Improved MFCC is combined with Convolutional Neural 

Networks (CNNs), a type of deep neural network which adept at the image processing 

two-dimensional data, such as images. CNNs are particularly effective in image 

recognition tasks due to their ability to learn complex features from data. However, 

since Multilayer Perceptrons (MLPs) are inadequate for handling spatial information 

in image data, the Javanese Eagle's sounds are first converted into spectrograms—a 

visual representation of the sound spectrum over time. Spectrograms provide a detailed 

picture of sound frequencies, enabling CNNs to train on this data more effectively and 

produce accurate classification models. 

As an essential method in signal processing namely the Mel Frequency Cepstral 

Coefficient (MFCC) serves as a powerful tool for extracting distinctive features from 

sound signals. Through this technique, sound waves undergo transformation into 

various parameters, particularly cepstral coefficient parameters, which effectively 

encapsulate the characteristics of the audio file. This process plays a pivotal role in 

analysing and understanding the underlying properties of sound, facilitating tasks 

ranging from speech recognition to audio classification. Moreover, an advancement 

known as Improved MFCC further enhances the feature extraction process by 

generating comprehensive feature vectors from voice signals. These vectors 
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encapsulate multiple dimensions of the audio, facilitating more nuanced analysis and 

recognition of speech features. Thus, the transformation of sound signals into 

spectrograms through the MFCC and its improved variants not only aids in 

understanding sound representations but also significantly contributes to the 

advancement of various applications in speech processing and beyond.  

Image recognition techniques, especially those utilizing Convolutional Neural 

Networks (CNNs), excel in identifying patterns and features within images 

(Bharadiya, 2023). By converting audio signals into spectrograms, the same powerful 

CNN architectures used in image recognition were leveraged to classify the audio data. 

This approach bridges the gap between audio and image processing, enabling the use 

of advanced deep learning techniques which have proven successful in fields such as 

facial recognition, object detection, and scene analysis. Unlike Multilayer Perceptron 

(MLP), CNN is designed to process two-dimensional data, making it well-suited for 

image classification tasks. The high depth of the CNN network allows it to learn 

complex features from image data, making it a powerful tool for image recognition 

and classification. 

A spectrogram is a visual representation of the spectrum of frequencies of a 

sound signal as they vary with time. It provides a specific picture of the sound image 

that CNN used to train adequately and produce an accurate model. The Mel Frequency 

Cepstral Coefficient (MFCC) model is a commonly used technique for converting 

audio data into a spectrogram. The MFCC model provided a specific picture of the 

sound image that CNN used for training adequately process in order to produce an 

accurate model. 
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Spectrograms provide higher accuracy in training than audio signals trained in 

digital form. By using spectrograms, CNN learned the complex features of sound data, 

making it a powerful tool for sound recognition and classification. 

The Improved MFCC and followed by CNN in deep learning architecture was 

developed to classify the Javanese Eagle's in order to identify whether the Javanese 

eagles is lacking of food or drink, finding a partner, or it is a normal tweet of bird. The 

results of this research were used to help the bird’s caretakers to better understand the 

basic needs of the Javanese Eagle. 

 Problem Statement 

The Mel-Frequency Cepstral Coefficients (MFCC) technique has been widely used in 

audio signal processing due to its effectiveness in feature extraction for speech and 

sound classification tasks. However, standard MFCC has notable limitations, 

particularly in recognizing high-frequency audio components (Kacur et al., 2022), 

which are crucial for accurately interpreting complex sounds such as the vocalizations 

of the Javanese Eagle. These limitations can lead to decreased accuracy in audio 

classification tasks, affecting the ability to effectively monitor and respond to the needs 

of these endangered birds. 

In conservation efforts for the Javanese Eagle, recognizing specific vocal 

patterns is essential for timely and appropriate care. The inability of basic MFCC to 

accurately capture high-frequency audio details poses a significant challenge in this 

context. High-frequency sounds play a vital role in the communication of the Javanese 

Eagle, and their misinterpretation can lead to inadequate responses to the birds' 

nutritional and breeding needs. 

To address the limitations of existing sound classification systems in recognizing 

the specific needs of the Javanese Eagle, this research conducted a thorough 


