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ABSTRACT 

Solar photovoltaic modules are a technology that utilizes solar energy. Solar 

photovoltaic modules have many advantages, such as clean electric energy without 

pollution, very simple to channelling energy, and the most important is that it does not 

produce greenhouse gas emissions and can be built in remote areas because it doesn't 

require energy transmission. In actuality, solar photovoltaic module systems are 

minimal maintenance and do not require any moving parts, but they still have more 

chances to get various defects by the environment or human beings. Once PV modules 

are electrically linked, the performance of the entire system might be impacted by any 

problem between them. Error-prone areas may be difficult to locate or recognise in a 

big solar photovoltaic module. A solar photovoltaic modules system can hide it until 

the whole system collapse or breakdown. On the surface of the photovoltaic modules, 

solar cell defects are identified based on cell shapes and textures. However, high 

similarity of characteristics among the shapes and textures has been a major challenge 

in defect classification process. The objective of this research was to develop and 

analyse feature extraction used for classification techniques for defect detection of 

solar photovoltaic modules surfaces. Methodologically, the entire study used a 

quantitative experiment technique. This research uses the Gaussian Naïve Bayes 

Algorithm using a ratio of training data and testing data of 70:30 resulting in an 

accuracy value of 46%. The second algorithm uses K-Nearest Neighbour using a ratio 

of training data and testing data of 95:05 resulting in an accuracy value of 62%. Both 

methods combine Statistical Feature Extraction and GLCM. Statistical tools provide 

quantitative information about the intensity distribution of pixels in an image, 

capturing important statistical properties such as mean, standard deviation, skewness 

and kurtosis. GLCM, on the other hand, analyses the spatial relationship between pixel 

pairs and extracts texture features such as contrast, correlation, energy and 

homogeneity. The accuracy value shows that the KNN algorithm is better when 

compared to the Naïve Bayes algorithm. Using the same data, these results are 

compared again using Convolutional Neural Network. The architecture used uses Le 

Net which is then modified into 3 2D layers and 1 Maxpooling screen. Experiments 

also compare the size of the image as input, using relu activation and adam 

optimization. The experiment results in the highest accuracy value at a ratio of 70:30 

for training data and test data, which is 68%. 

 

Keywords: Enhancing, Naïve Bayes, K-Nearest neighbour, Convolutional Neural 

Network, feature extraction 
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CHAPTER 1   

INTRODUCTION 

Presenting the study findings on the design and development of solar photovoltaic 

module fault detection is the primary goal of this thesis. Defect detection systems for 

solar PV modules have been widely applied to identify installation errors (Naveen & 

Sugumaran, 2021). Some of these studies convey that solar photovoltaic modules 

defects depend on many parameters consisting of installation methods such as voltage, 

current, power and series resistance; in addition, there are many environmental factors 

such as temperature and environmental conditions and maintenance methods.  

Defects on the surface of solar photovoltaic modules have been well studied 

and classified according to their origin, nature and effect on solar photovoltaic modules 

performance. The most common types are scratches (Chen et al., 2020), edge-dipped 

panels leaving small invisible holes  (Buerhop et al., 2017), micro-cracks that are not 

immediately visible (Mahdavipour, 2017), chemical residues left behind during the 

maintenance process to clean the panel surface (Li et al., 2019).  

The main focus of this research is to investigate the use of intelligent image 

processing techniques for defect classification in solar photovoltaic modules. To 

achieve this goal, several different methods were tested and compared to determine 

the most effective approach. In this chapter, the results of these experiments are 

presented and discussed in detail. 

Overall, the results of this study demonstrate the feasibility of using feature 

extraction for defect classification in solar photovoltaic modules. Choosing the correct 

method and carefully optimising various parameters makes it possible to achieve a 

high level of accuracy in classifying different defect types. These results have 

important implications for developing algorithms used and data implemented for more 
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efficient and effective maintenance procedures for solar photovoltaic modules and 

demonstrate that image feature extraction techniques have a potentially important role 

in this field. 

1.0  Background of the Study 

The world still has to rely on petroleum as the primary buffer for energy needs. 

Meanwhile, this energy source is becoming increasingly scarce and expensive. The 

need for electrical energy continues to increase beyond expectations. This is due to 

the increase in all life activities that use electricity. Therefore, there is a need for 

energy derived from nature to be an alternative energy known as renewable energy 

that is environmentally friendly and contributes to addressing global warming and 

reducing carbon dioxide emissions. 

The sun is the primary energy source that emits the most significant energy to 

the earth. Under normal conditions, the earth's surface can receive solar energy of 

around 1000 watt/m2 (Mokhtari, & Kimour,  2019). The solar energy that can reach 

the earth's surface is about 207.898 MW (4,80 kWh/m2/day). Less than 30% of this 

energy is reflected in the atmosphere  (Purwoto et al., 2018). Utilising energy from 

the sun would be very beneficial (Siregar & Wardana,  2017). 

Solar photovoltaic modules are a technology that utilizes solar energy. Solar 

photovoltaic modules have many advantages, such as clean electric energy without 

pollution, being accessible to move, being very simple to channelling energy, and, 

most importantly, not producing greenhouse gas emissions. It can be built in remote 

areas because it does not require energy transmission.  

The fact is that solar photovoltaic modules systems have no moving parts and 

generally require low maintenance. However, they still have more chances to 

experience various failures in the solar photovoltaic modules array, battery cables, and 
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power conditioning unit. It is difficult to completely shut down solar photovoltaic 

modules in the event of a malfunction because the modules are energised by sunlight 

during the day. Solar photovoltaic modules are modular technology power plants that 

can be made by connecting many solar photovoltaic modules in series and parallel. 

Once the solar photovoltaic modules are electrically connected, any fault between 

them can affect the entire performance of the system. It can be complicated to correctly 

identify or detect faults in a large solar photovoltaic modules array. A faulty solar 

photovoltaic modules system can go unidentified because it is hidden until the entire 

system collapses or breaks down (Khan et al., 2017).  

Figure 1.1: Fire hazard in 383 kW PV arrays in Bakersfield, California in 2009  

 

 

 

 

 

 

 Source: (Khan et al., 2017) 

Several hazards have been reported in Sudanese solar photovoltaic modules 

stacking due to undetected faults. Figure 1.1 shows a fire hazard on a 383 kW PV 

module in Bakersfield, California, 2009. Another fire hazard occurred at a 1 MW PV 

power plant in Mount Holly, California, in 2011, shown in Figure 1.2. In both cases, 

unknown faults in the system caused the fire and shut down the system completely. 

This fire hazard points out the weaknesses in conventional fault detection and 

protection schemes in solar photovoltaic modules arrays and reveals the urgent need 

for better ways to prevent such problems. Failure-free, excellent efficiency, fast, 


