IMPLEMENTATION OF HYBRID INDEXING, CLUSTERING AND CLASSIFICATION METHODS TO ENHANCE RURAL DEVELOPMENT PROGRAMME IN SOUTH SULAWESI

MUHAMMAD FAISAL

ASIA e UNIVERSITY 2024

IMPLEMENTATION OF HYBRID INDEXING, CLUSTERING AND CLASSIFICATION METHODS TO ENHANCE RURAL DEVELOPMENT PROGRAMME IN SOUTH SULAWESI

MUHAMMAD FAISAL

A Thesis Submitted to Asia e University in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2024

ABSTRACT

Limited involvement of communities and village institutions in planning, implementing, and supervising village development activities, as well as difficulty in monitoring development results, resulted in a lot of untapped natural potential in traditionally managed villages due to technological limitations and low levels of education. Development in rural areas faces obstacles from internal factors such as lack of initiative and knowledge among rural communities and external factors such as constraints on government support. Village development and assistance program is a strategy implemented to accelerate socio-cultural development to increase the capacity of village governance and more organized administration. The village assistance programme can motivate and engage rural communities during the participatory and transparent phase of village development. The criteria used in this study were produced through the identification, verification, and validation stages by experts consisting of academian, government, and researchers. The objectives of this research are to develop a community standard of living index based on verified criteria collected from selected communities, to cluster the village based on the community standard of living index, to classify a village based on the Developing Village Index(DVI), Human Development Index(HDI), and Community Standard of Living Index(CSLI), and to map the relevant experts with the priority needs of a village based on the input from the villages. The initial stage in this study involved the design of the questionnaire, the process of criteria weighting, and the scoring of villages by communities. CSLI was developed to represent the community welfare level for each village. Clustering techniques such as Self-Organizing Map, Fuzzy C-Means, and Xie-Beny methods are utilized to clustering villages according to the Community Standard of Living Index. The Fuzzy Tsukamoto and Smallest of Maximum methods were then used to classify villages into less development, which involved CSLI-Clusters as indicators. Using the cosine similarity algorithm for knowledge recommendation is village identified, utilizing community feedback as the foundation. Based on the clustering results using CSLI Score, Head of Family, and Number of Residence criteria, it is stated that all villages are divided into 3 clusters, which are CSLI-Good, CSLI-Average, and CSLI-Poor. The classification technique using the CSLI-Cluster, DVI, and HDI criteria showed that as many as 22 villages had the status of Less Development level, and 8 villages were declared Developed. This research identified the following recommended fields: agricultural science in 11 villages, social sciences in 11 villages, economics in 10 villages, entrepreneurship in 8 villages, marine science, forestry, and computers in 11 villages each, and regional planning in 2 villages with 82% accuracy. The result validation of decisions on the placement of accompanying experts in each village with actual data was carried out using the confusion matrix metho, which are accurate = 0.819, precision = 1, recall = 0.819, and F1-Score = 0.9. This shows that the accuracy status indicates a high percentage of correct predictions, and then the F1 Score of 0.9 indicates a well-balanced trade-off between precision and recall, demonstrating the model's overall effectiveness. The government can use the findings of this research as a decision-making tool regarding equitable village development programs.

Keywords: Rural, village assistant, indexing, clustering, classification, recommendation, DSS

APPROVAL

This is to certify that this thesis conforms to acceptable standards of scholarly presentation and is fully adequate, in quality and scope, for the fulfilment of the requirements for the degree of Doctor of Philosophy

The student has been supervised by: Professor Dr. Titik Khawa Abdul Rahman

The thesis has been examined and endorsed by:

Professor Dr. Azman Yassin, College of Arts and Science, UUM Examiner 1

Professor Dr. Azlinah Mohamed UiTM Examiner 2

This thesis was submitted to Asia e University and is accepted as fulfilment of the requirements for the degree of Doctor of Philosophy.

Professor Dr Siow Heng Loke Asia e University Chairman, Examination Committee (04 January 2024)

DECLARATION

I hereby declare that the thesis submitted in fulfilment of the PhD degree is my own work and that all contributions from any other persons or sources are properly and duly cited. I further declare that the material has not been submitted either in whole or in part, for a degree at this or any other university. In making this declaration, I understand and acknowledge any breaches in this declaration constitute academic misconduct, which may result in my expulsion from the programme and/or exclusion from the award of the degree.

Name: Candidate Name

Signature of Candidate:

Date: 4 January 2024

Copyright by Asia e University

ACKNOWLEDGEMENTS

I express profound gratitude to my Doctoral Supervisor, Professor Dr. Titik Khawa Abdul Rahman, for her exceptional guidance, unwavering support, and invaluable insights throughout the entirety of this dissertation's completion process. Her profound expertise in Information Communication and Technology, commitment to academic excellence, and mentorship have played a pivotal role in shaping the trajectory of my research and academic journey.

I am indebted to STMIK Professional Makassar and Dipa University for their collaborative support, which has enriched this research endeavor. Their significant contributions to the Information Communication and Technology field have played an instrumental role in broadening the scope and impact of this dissertation.

I wish to convey heartfelt gratitude to my family for their unwavering love, encouragement, and understanding throughout this doctoral journey. Their steadfast support and belief in my abilities have served as my greatest source of strength and motivation.

Lastly, I am thankful to all my colleagues, friends, and mentors who have provided unwavering support, encouragement, and scholarly insights throughout this journey. Your collective contributions have enriched this doctoral experience and have played a pivotal role in shaping the researcher I have become.

TABLE OF CONTENTS

ABSTR APPRO	AACT DVAL	ii iii
DECLA	ARATION	iv
ACKN	OWLEDGEMENTS	vi
TABLE	COF CONTENTS	vii
LIST O	OF TABLES	X
LIST O LIST O	OF FIGURES OF ABBREVIATION	xiv xvi
CHAPTER 1	INTRODUCTION	1
1.0	Background of the Study	1
1.1	Problem Statement	4
1.2	Objectives	5
1.3	Research Questions	6
1.4	Justifications and Significance of the Study	7
1.5	Contribution to Methodology	8
1.6	Chapter Summary	9
CHAPTER 2	REVIEW OF LITERATURE	11
2.0	Introduction	11
2.1	Rural Development in Indonesia	12
2.2	Village Assistance	13
2.3	Developing Village Index (DVI)	14
2.4	Human Development Index (HDI)	33
2.5	Clustering Techniques	38
	2.5.1 Fuzzy C-Means	38
	2.5.2 Self-Organizing Map	42
	2.5.3 Xie-Beni	43
2.6	Classification Techniques	44
	2.6.1 Fuzzy Tsukamoto	45
	2.6.2 Smallest of Maximum	48
2.7	Text Mining	48
2.8	Confusion Matrix	51
2.9	Community Standard of Living Index (CSLI)	52
2.10	Many Object Optimization (MOO) - Fuzzy Delphi Algorithm	53
2.11	Research Gap	54
2.12	Chapter Summary	61
CHAPTER 3	METHODOLOGY	62
3.0	Introduction	62
3.1	Research Design	62
3.2	Development of CLSI	64
0.2	3.2.1 Identification of Criteria	64
	3.2.2 Validation of Criteria	66
	3.2.3 Verification of Criteria	66
	3.2.4 Evaluation of Criteria	67
		57

	3.2.5	Weighting	of Criteria	68
	3.2.6	Village Input		69
3.3	Cluster	ring of Com	nunity Standard of Living Index	77
	3.3.1	Clustering	Technique Using Hybrid SOM and	
		Xie-Beny		80
		3.3.1.1	Clustering Technique Using Hybrid	
			SOM and Xie-Beny	80
		3.3.1.2	Clustering Technique Using Hybrid	
			FCM and Xie-Beny	80
		3.3.1.3	Clustering Technique Using Hybrid	
			SOM FCM, and Xie-Beny	80
		3.3.1.4	Clustering Technique Using K-Means	
			and Elbow	80
3.4	Classif	fication of the	e Developing Village	86
	3.4.1	Classificat	ion Fuzzy Tsukamoto and Smallest of	
		Maximum		88
		3.4.1.1	Classification Technique Using Fuzzy	
			Tsukamoto	88
		3.4.1.2	Classification Technique Using	
		2 4 4 2	Tsukamoto and Smallest of Maximum	89
		3.4.1.3	Classification Technique Using Fuzzy	0.1
2.5			Mamdani	91
3.5	Detern	nining Fields	of Expertise Relevant to The Less	0.1
	Develo	pment Villa		91
	3.5.1	I ext Minii Monning V	I echnique Using Cosine Similarity for	02
2.6	Chapta	Mapping v	vinage Assistance	92
5.0	Chapte	a Summary		95
CHAPTER 4	RESU	LTS AND D	DISCUSSION	96
4.0	Introdu	uction		96
4.1	Develo	opment Com	munity Standard of Living Index	
	based of	on Verified C	Criteria Collected from Selected	
	Comm	unities		96
	4.1.1	Identificat	ion and Validation Criteria for CSLI	96
	4.1.2	Verificatio	on and Evaluation for CSLI	98
	4.1.3	Weightage	e for Village Input Using Rank Reciprocal	106
	4.1.4	Result for	Community Standard of Living Index	110
4.2	Village	e Clustering	based on the Community Standard of Living	g
	Index	Using Hybrid	l Fuzzy C-Means, Self-Organizing	
	Map, a	nd Xie-Beny	/	116
	4.2.1	Initiation of	of Weight Using Self-Organizing Map	116
	4.2.2	Final Weig	ght for the Village	120
	4.2.3	Clustering	of Villages	123
		4.2.3.1	Analysis for 4 Clusters	123
		4.2.3.2	Analysis for 5 Clusters	123
		4.2.3.3	Analysis for 6 Clusters	123
		4.2.3.4	Comparion SOM, FCM, Xie Beny with	100
	4 2 4	Ontin	Nivieans Eldow	123
	4.2.4	Opumum	Clustering Using Ale-Bem and Elbow	100

4.3	4.3 Classification of a Village based on the DVI, HDI, and CSLI-		
Cluster Using the Fuzzy Tsukamoto + Smallest of Maximum			
	Defuzzification		157
	4.3.1 Result of Classifi	cation of Villages Using Tsukamoto	
	and Smallest of N	Iaximum	157
	4.3.1.1 Dete	rmining of Indicators	157
	4.3.1.2 Fuzz	vification of Indicators	159
	4.3.1.3 Rule	Evaluation	157
	4.3.1.4 Defu	zzification for Classification of	
	Villa	ages using Tsukamoto and Smallest	
	of M	laximum	157
	4.3.1.5 Defu	zzification for Classification of	
	Villa	ages Using Mamdani and Mean of	
	Max	imum	157
4.4	Mapping the Relevant Experts with the Priority needs of a		
	Village based on the Input from the Villages Using Cosine		
	Similarity Text Mining Pro	DCess	193
4.5	Chapter Summary		201
CHAPTER 5	CHAPTER 5 CONCLUSION, IMPLICATION AND		
	RECOMMENDATIONS		204
5.0	Introduction		204
5.1	Over All Conclusion		204
5.2	Research Challenges		206
5.3	Limitation of the Study		207
5.4	Implications of the Study		208
5.5	Recommendation for Futu	re Work	208
REFERF	INCES		210
APPEND	DICES		224
Appendix	A		224
Appendix	B		228
Appendix	C		229
Appendix	D		234
Appendix	E		249
Appendix	F		253

LIST OF TABLES

Table		Page
1.1	Relationship problem statement, research object, research question	6
2.1	Determination of the maximum and minimum HDI	37
2.2	Summary of application hybrid technique of past few review papers	47
2.3	Example extraction in the text mining	51
2.4	Research gap summary	57
3.1	Identification of criteria	64
3.2	Fuzzy scale for validation of criteria	66
3.3	Village input instruments	69
3.4	Recommendation validation status in the field of expertise	94
4.1	List of respondents of expert	97
4.2	Input agreement value for criteria 1 to criteria 19	99
4.3	Input agreement value for criteria 20 to criteria 38	99
4.4	Determining average m1,m2,m3 for criteria 1 to criteria 5	100
4.5	Determining average m1,m2,m3 for criteria 6 to criteria 10	100
4.6	Determining average m1,m2,m3 for criteria 11 to criteria 21	101
4.7	Determining average m1,m2,m3 for criteria 22 to criteria 32	102
4.8	Determining average m1,m2,m3 for criteria 33 to criteria 38	103
4.9	Threshold value for criteria 1 to criteria 10	103
4.10	Threshold value for criteria 11 to criteria 38	103
4.11	Evaluation of criteria	105
4.12	Weight of criteria and Instrument	107
4.13	The demographic of the respondents	111
4.14	Example community scoring	112

4.15	CSLI value for each village	115
4.16	The village input	116
4.17	Normalization of criteria weight	118
4.18	Randomly initial weight	119
4.19	Determining short distance	120
4.20	Calculation of BMU weight	120
4.21	Update weight on iteration 16	121
4.22	The changing data on iteration 17.	121
4.23	Convergence data for villages using SOM	122
4.24	Membership value	123
4.25	MiU squared	125
4.26	Cluster centroid	126
4.27	Membership degree	127
4.28	Objective value each iteration	128
4.29	Convergent data on iteration 1	129
4.30	Result member value on the last iteration for 3 clusters	130
4.31	Cluster centroid for 4 clusters	132
4.32	Membership degree for 4 clusters	133
4.33	Result member value on the last iteration for 4 clusters	135
4.34	Cluster centroid for 5 clusters	137
4.35	Membership degree for 5 clusters	138
4.36	Convergent data on Iteration 1 for 5 clusters	140
4.37	Result member value on the last iteration for 5 clusters	141
4.38	Cluster centroid for 6 clusters	143
4.39	Membership degree for 6 clusters	144

4.40	Result member value on the last iteration for 6 clusters	146
4.41	Initial centroid Elbow randomly	148
4.42	Result member value on the last iteration	150
4.43	Initial centroid K-means	151
4.44	Determining centroid distance K-means	151
4.45	New centroid K-means	153
4.46	Result clusters on the last iteration K-means	154
4.47	Optimum cluster Xie-Beni	156
4.48	List of indicators for classification	158
4.49	Set of CSLI - cluster indicator	160
4.50	Set of DVI indicators	161
4.51	Set of HDI indicators	163
4.52	Set of village development level indicators	165
4.53	List of rules based on Fuzzy Tsukamoto	167
4.54	Assessment data from each village	170
4.55	Result of fuzzy implication for each village using Tsukamoto	177
4.56	Defuzzification of SoM and weighted average	187
4.57	Result of fuzzy implication for village using Mamdani	189
4.58	Defuzzification of Mom and SoM	192
4.59	Dataset community comments	194
4.60	Building term frequency and inverse document frequency	195
4.61	Result of TFIDF weight for term	196
4.62	Counting dot product value	196
4.63	Result of TFIDF vector normalize value	197
4.64	Counting of Cosine Similarity	198

4.65	Results of confusion matrix testing in less development group villages	198
4.66	Recommendation expert for the village	200

Figure		Page
2.1	Diagram for inference fuzzy process	45
2.2	Flowchart of text mining	50
3.1	Research design	63
3.2	Flowchart of fuzzy Delphi methodology	67
3.3	Flowchart of rank reciprocal algorithm	69
3.4	Research design clustering community standard of living index	77
3.5	Flowchart for determining community standard of living index	79
3.6	Flowchart clustering technique using hybrid SOM and Xie-Beny	81
3.7	Flowchart clustering technique using hybrid FCM and Xie-Beny	82
3.8	Flowchart clustering technique hybrid SOM, FCM, and Xie-Beny	84
3.9	The research design for the classification of the developing village	86
3.10	The flowchart for the classification of the developing village	87
3.11	Flowchart classification hybrid Tsukamoto + weighted average	88
3.12	Flowchart classification using Tsukamoto and defuzzy smallest	89
3.13	The trapezium curve	90
3.14	Determine the fields of expertise relevant to the village	92
3.15	Flowchart cosine similarity algorithm in text mining	93
3.16	The process of seeking recommendations in the field of expertise	94
4.1	Evaluation on rank of criteria	106
4.2	Visualization 3-6 Clusters	149
4.3	Chart of optimal cluster using Elbow	150
4.4	Clustering K-Means+ Elbow and clustering SOM + XB + FCM	155
4.5	Fuzzy CSLI-Cluster set	159

LIST OF FIGURES

4.6	DVI fuzzy set	161
4.7	Fuzzy set of HDI indicators	163
4.8	Set of Village Development Level indicator	165
4.9	Comparison result classification methods for village development	193
4.10	Result of Village Classification	194
4.11	Chart number field of expertise recommendations for the village	201

LIST OF ABBREVIATION

CSLI	Community Standard of Living Index
DVI	Developing Village Index
HDI	Human Development Index
VDL	Village Development Level
GR	Government Regulation
UNDP	United Nations Development Programme
VF	Village Facilitators
VL	Village Law
DDAT	Development of Disadvantaged Areas and Transmigration
CBS	Central Bureau of Statistics of South Sulawesi

CHAPTER 1

INTRODUCTION

1.0 Background of the Study

Discussions on the framework have been started from 2021 - 2027, and regarding to the increasing importance given to rural areas by the European Union, the multiplicity of resources and their positive benefits can be influential factors for sustainable rural development (Abreu et al., 2019). Regarding the implementation of the framework by the European Union, all levels of government can work together to develop rural areas. The author's concern in this study is that the delivery of the latest information about the status of the village is prolonged. Besides that, there has been no source of information explaining the stages of implementing equitable development through village assistance programs. Previous research stated that data collection on village potential was carried out by the Central Bureau of Statistics of South Sulawesi Province every three times in 10 years. However, it did not explain which areas had high or low village potential (Azrahwati et al., 2022). Village potential is a resource or asset owned by a village that can be utilized to advance the village to improve community welfare, covering the social, economic, and regional facilities and infrastructure (Annisa Nur Fathia et al., 2018). Subsequent research stated that the Ministry of Rural and Transmigration had not provided the latest data regarding updating village data in Yogyakarta up to 2022, so the classification results displayed still use data in 2016. However, several studies reported that the statuses of several villages had changed (Salima & Ilham, 2022).

The low participation of the communities and village institutions in planning, implementing, and controlling village development activities, as well as the preservation of development results, has resulted a lot of natural potential in the village, which is still managed traditionally due to the inability to master technology, relatively low community education and the tendency of the villagers to accept conditions as they are. Generally, the development of rural areas has not been implemented due to internal factors originating from the village, namely the lack of initiative and knowledge from the village community and external factors originating from the government in socializing and providing assistance to rural communities (Andari & Ella, 2019). The alternative that can be performed to realize an independent village is to apply the method of coaching and mentoring or direct assistance to carry out the acceleration of development in the socio-cultural aspect, strengthen the capacity of the village government, and structure government administration (Nur Arifah & Kusumastuti, 2019). Based on the previous research results, it is necessary to have a strategic role of experts as companions who became motivators of initiative, awareness, and participation of rural communities to create independent villages that can act as development subjects starting from the planning, implementation, and evaluation stages of village development which are carried out in a participatory, transparent manner.

In order to implement village development programs aimed at improving the quality of life of people in rural areas, a study applies the Self-Organizing Map and Fuzzy C-Means methodology to classify families in the community based on socio-demographic information obtained through surveys (Morales et al., 2024). This research is directed to investigate family patterns and characteristics at the community level, with the hope that a deeper understanding of these socio-demographic structures can help plan and implement village development programs more effectively. Previous research evaluated the environmental sustainability of rural communities using the

improved TOPSIS method and entropy weighting method (Lin & Hou, 2023), where the study results provide references and guidance for policy makers for ICT-based sustainable development initiatives.

Based on the statement by the Central Bureau of Statistics (Badan Pusat Statistik) of South Sulawesi that experts are needed to assist the community in managing village assets so that all resources can be maximized for the welfare of the community, then the village assistance organizers need information sources that serve as guidelines for the placement of experts so that the implementation of village development equity is more equitable on target. The literature on village development has achieved significant progress in Infrastructure and Basic Services. However, there is a knowledge gap in terms of technology and innovation that can support the improvement of the quality of life in the village. Therefore, this research contributes to the acceleration of equitable distribution of village development through the support and role of information technology.

The strategy for equitable development through the placement of experts targeted in a village has guidelines that are generated through renewal processes, including (1) Clustering the standard of living index of the community in a village using the combination of the Fuzzy C-Means, Self-Organizing Map and Index Xie-Benny methods. (2) Classifying villages based on the developing village, human development, and community standard of living index was carried out by using the Fuzzy Tsukamoto - Smallest of Maximum Defuzzification method to determine the status of underdeveloped villages. (3) Determining the field of expertise of the village assistant that is relevant to the problems in a village through the text mining process using the cosine similarity algorithm.

1.1 Problem Statement

In this research, the problem statement that can be identified are :

- i. A research by Azrahwati et al., (2022) stated that data collection for identifying the potential of a village is carried out by the Central Bureau of Statistics of South Sulawesi (Badan Pusat Statistik Provinsi Sulawesi Selatan) once in every 3 or 4 years. However, the results of this data collection did not cluster the villages based on the standard of living of the villages which has the ability to serve as guidelines and instructions for improving people's welfare. The implication is that the information reported to the central government cannot describe the real and current conditions which have an impact on the success of government support on villages because of lack of objective, during the decision-making (Astuti, 2017). Supandi et al., (2020) stated that developing villages need information about community needs, where clustering the villages based on characteristics can be used as a basis for development.
- ii. The second problem concerns the methodology used by the Central Bureau of Statistics to determine the priority scale in providing support to disadvantaged villages has not used indicators of the actual condition approach, as stated that the indicators used by the Central Bureau of Statistics to determine the priority have not been able to represent the actual conditions of a village (Okfalisa et al., 2021). The implication is that the village development index has not been able to determine activities for the village development programme. Purwanto(2017) stated that one of the weaknesses of the village development index is that it does not involve the community in its assessment and calculation, in fact in an effort to see services that have been carried out by the government, an assessment from the community is needed.

iii. The third problem is on matching of experts to suit the needs of the villages. Currently the skills in the fields of science possessed by village assistants are not relevant to the problems that are currently happens in a village (Dianto, 2019). The findings from this research that the village assistants who were suppose to be professional experts were still lacking in knowledge and mastery of community empowerment and mentoring (Suheryadi, B., Shomad, A., & Djatmiati, 2020). In addition, that the expertise or skills possessed by the village assistant are not in line with the expectations.

1.2 Objectives

After outlining the issues related to the strategy for implementing equitable village development, four objectives that have been identified for this research are stated as follows:

- i To develop a community standard of living index based on verified criteria collected from selected communities.
- To cluster the village based on the community standard of living index using hybrid Fuzzy C-Means, Self-Organizing Map, and Xie-Beny.
- iii To classify a village based on the Developing Village Index(DVI), Human Development Index(HDI), and Community Standard of Living Index(CSLI) using the Fuzzy Tsukamoto – Smallest of Maximum Defuzzification, relevant expertise in term of his/her area of specialization that suit to the needs of prioritised villages.
- iv To map the relevant experts with the priority needs of a village based the input from the villages using cosine similarity text mining process.

1.3 Research Questions

The research questions of this study are stated as follows:

- i Who is the source of information for the data needed?
- ii What are the criteria used to determine the community standard of living index?
- iii What is the best clustering technique to cluster the villages based on its community standard of living index?
- iv What are the input criteria to determine the best clustering technique?
- v What are the input indicator to determine the classification the villages?
- vi What are the rules to classification the villages?
- vii What are the input data to determine the field of expertise needed by a village?
- viii What are the indicators to validate the right placement of experts in a village?

Table 1.1: Relationship problem statement, research object, research question

Problem Statement	Research Objectives	Research Questions
i. Village potential data	i.To develop a	i. Who is the source of
collection is carried out	community standard	information for the data
by the Central Bureau of	of living index based	needed?
Statistics of South	on verified criteria	ii. What are the criteria
Sulawesi (Balai Pusat	collected from	used to determine the
Statistik Provinsi	selected communities.	community standard of
Sulawesi Selatan) every	ii. To cluster the village	living index?
three times in 10 years.	based on the	iii. What is the best
However, the data	community standard	clustering technique to
collection results did not	of living index using	cluster the villages based
explain village clustering,	hybrid Fuzzy C-	on its ccommunity
which can serve as	Means, Self-	standard of living index?
guidelines and	Organizing Map, and	iv. What are the criteria
instructions for	Xie-Beny	input to determine the
improving people's		best clustering
welfare.		technique?

ii.The second problem	iii.To classify a village	v. What are the input
concerns the	based on the	indicator to determine
methodology used by the	Developing Village	the classification the
Central Bureau of	Index(DVI), Human	villages?
Statistics to determine	Development	vi. What are the rules to
the priority scale in	Index(HDI), and	classification the
providing support to	Community Standard	villages?
disadvantaged villages	of Living	
has not used indicators of	Index(CSLI) using the	
the actual condition	Fuzzy Tsukamoto –	
approach, however the	Smallest of Maximum	
indicators used by	Defuzzification,	
Central Statistical	relevant expertise in	
Agency to determine the	term of his/her area of	
priority have not been	spesialization that suit	
able to represent the	to the needs of a	
actual conditions of a	prioritised villages.	
village.		
iii.Matching of experts to	iv. To map the relevant	vii. What are the input
suit the needs of the	experts with the	data to determine the
villages, currently the	priority needs of a	field of expertise
skills in the fields of	village based on the	needed by a village?
science possessed by	input from the	viii. What indicators
village assistants are not	villages using the	validate the right
relevant to the problems	cosine similarity text	placement of experts
that currently happen in a	mining process	in a village?
village.		

1.4 Justifications and Significance of the Study

After interviews with authorized sources, it can be said that this research is fundamental because it is imperative to support the implementation of equitable village development. Based on village ranking status in 2020 submitted by the Ministry of