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ABSTRACT 

Machine learning and image processing methods can effectively detect nutrient 

deficiencies in citrus trees, addressing the challenge of accurately identifying shortages 

that can impair crop health and productivity. Traditional methods often rely on expert 

visual assessments, which are labour-intensive, subjective, and time-consuming. The 

proposed method integrates colour and texture feature-based image analysis with 

machine learning algorithms for classification. The process begins with acquiring 

image data, which is categorized into four classes: nitrogen (N) deficiency, phosphorus 

(P) deficiency, potassium (K) deficiency, and normal. In total, 1,200 images are 

collected. Next, file sizes are reduced using lossless compression methods, achieving 

a 96.99% reduction. The second phase involves image segmentation using the Sauvola 

method. Following this, colour and texture feature extraction is performed. Colour 

features are extracted in the Hue (H), Saturation (S), and Value (V) colour space, while 

texture features are obtained using the Grey-Level Co-Occurrence Matrix (GLCM) 

method. This combination of colour and texture features results in various metrics, 

including mean, dissimilarity, skewness, angular second moment, variance, entropy, 

maximum probability, contrast, correlation, energy, and homogeneity, which are used 

for classification. Both Support Vector Machine (SVM) and Artificial Neural Network 

(ANN) methods are compared for classification. The Sauvola method combined with 

ANN achieves the highest accuracy of 93.75%. In the next phase, the datasets are 

optimized using the Salp Swarm Algorithm (SSA), which improves classification 

accuracy. With SSA optimization, the Sauvola method combined with SVM reaches 

an accuracy of 99.58%, surpassing other methods that use image processing and ANN 

classification. Expert validation is utilized to evaluate and validate the effectiveness of 

the proposed method and confirm the system's accuracy at 95%. Integrating SSA and 

SVM machine learning algorithms improves decision-making processes, leading to 

better crop yield through early detection and timely nutrient management. It ensures 

that plants receive the necessary nutrients for optimal growth and development. 

Keywords: Citrus leaves, classification, Sauvola segmentation, optimization, Salp 

Swarm Algorithm   
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CHAPTER 1  

INTRODUCTION 

This chapter discussed the background of the study, the problem statement, objectives, 

research questions, justifications and significance of the study. The contributions are 

separated into three parts: theoretical, practical and methodology. The end of this 

chapter discussed the scope of work and limitations of the research. 

 Background of the Study 

Citrus fruits were the world's second most-produced fruit in 2021, with 161.8 million 

tonnes produced on over 10.2 million hectares (Gonzatto & Santos, 2023). Based on 

the data (World Citrus Organisation, 2022), worldwide orange production reached 

76.7 million tons in 2021. Brazil, India, China, the United States, Mexico, Spain, Egypt 

and Indonesia are the central producer countries. Oranges are the most crucial citrus 

crop, accounting for 75.57 million tonnes (46.7% of total citrus fruit output) over a 

harvested area of 9.93 million hectares. Tangerines are the second most significant 

fruits, with a harvest area of 3.11 million hectares and an output of 41.95 million tonnes 

(25.9% of citrus fruit production). Lime and lemon output were 20.83 million tonnes 

(12.87% of citrus fruit production) on 1.34 million hectares (FAO, 2019). 

There are four prominent citrus varietal groups distinguished in the international 

market (Singh et al., 2021): 

1. Sweet orange (Citrus sinensis) 

2. Lemon (Citrus lemon) and lime (Citrus aurantifolia) 

3. Mandarins (Citrus reticulata) 

4. Grapefruit (Citrus paradisi) 
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Mandarins, which include tangors, tangerines, clementines, satsumas, and 

tangelos, are the second-largest group of cultivated citrus after sweet oranges and 

account for approximately 25% of worldwide citrus production (Ladaniya, 2008). 

Mandarin refers to a group of citruses characterized by thin skin and easy peeling. 

Tangerines are a type of mandarin with a dark orange to reddish-orange colour and are 

smaller than Citrus reticulata (Usman & Fatima, 2018). The appearance of citrus fruit, 

as shown in Figure 1.1, is attractive if it is uniform in size, has a bright yellow-orange 

colour, is evenly and smoothly free from physical defects or previous pest attacks, and 

has a good taste and consistent sweetness. 

Figure 1.1: Citrus reticulata Sp 

 

The quality of citrus fruit is determined by its appearance and taste. The quality 

of citrus fruits depends on several factors, including environmental conditions, nutrient 

intake, planting method, and treatment at and after harvest. Vitamins are important 

factors for a plant's growth and reproduction. Macronutrients, which include 

phosphorus (P), nitrogen (N), potassium (k), sulfur (S), calcium (Ca), and magnesium 

(Mg), are regularly used to perceive plant nutrients. Nutrient consumption is a massive 

aspect of cultivating citrus (Sun et al., 2018) (Jeyalakshmi & Radha, 

2017). Micronutrients, which include zinc (Zn), boron (B), sodium (Na), copper (Cu), 
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nickel (Ni), iron (Fe), chlorine (Cl), cobalt (Co), silicon (Si), molybdenum (Mo), and 

manganese (Mn), are also needed by plants. 

Plant nutrient deficiency symptoms are usually visible in leaves and fruits. 

Symptoms in leaves include marginal chlorosis, interveinal chlorosis, uniform 

chlorosis, distorted edges, reduction in leaf size, and necrosis. Although similar 

symptoms can occur in old and new leaves, the deficient nutrient may vary depending 

on other factors. Deficiency symptoms are widely used to identify nutrient 

responsiveness in citrus leaves (Jeyalakshmi & Radha, 2017). 

Research on identifying nutrient deficiencies in plants using image processing 

techniques, especially in Indonesia, has not been conducted extensively, as most 

research focuses on identifying plant diseases. As an agrarian country, Indonesia must 

develop the latest agriculture technology. Nutrient deficiency in plants can result in 

decreased crop yields. Research on nutrient deficiencies has been conducted 

(Rahadiyan et al., 2023), but the research only had an accuracy of 59% because it only 

classified leaves based on texture. Other studies recommend a system equipped with 

an automatic identification system for plants (Jose et al., 2020). 

Action must be taken to correct nutritional shortages in plants and reduce losses. 

Numerous auxiliary technologies have been created to automate information and data 

obtained from picture processing. This technology's design and use will greatly help 

to lower expenses, increase productivity, and decrease the need for chemical fertilisers. 

Plant nutrition detection is a new and popular research topic, but many challenges exist 

in applying image processing expertise and learning procedures for plant nutrition 

recognition. The suggested algorithms must be precise with a small error margin since 

inaccurate detection can seriously impair agricultural output. 
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The topic of intelligent classification systems study encompasses a wide range 

of activities, including feature extraction, segmentation, preprocessing of data, and 

classifier learning. Image identification is one of the most interesting challenges at 

hand. Techniques for image processing are essential for analysing smart agricultural 

technology. A detection and classification system using digital image processing 

technology would more accurately and quickly classify nutrient deficiency symptoms 

in citrus trees than a human eye could (Tian et al., 2020). It would enable farmers to 

take appropriate corrective action in farm management. The primary goal of this 

proposed research is to develop detection and classification methods for nutrient 

deficiencies in citrus leaves using image analysis techniques.  The purpose is to 

perceive and quantify the colour and texture attributes of citrus leaves the use of the 

following steps (Sun, 2016): 

a. Image pre-processing 

b. Image segmentation (based on threshold and edge technique). 

c. Feature extraction (texture and colour extraction)  

d. Image classification using ANN and SVM 

e. Improved ANN and SVM using the Salp Swarm Algorithm (SSA) 

In this modern era of technology, advancements in artificial intelligence have 

given rise to two primary paradigms in data analysis and understanding: machine 

learning and deep learning. As a subset of artificial intelligence, deep learning has 

garnered significant attention for its ability to tackle complex problems such as image 

recognition, natural language processing, and various other tasks. Deep learning has 

achieved remarkable feats across domains by utilising deep neural network 

architectures. 
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However, despite the remarkable popularity and achievements of deep learning, 

the older machine learning technology still holds a firm place in data analysis. Machine 

learning has proven effective in solving classification and prediction problems with 

lower resource requirements and higher interpretability. It is crucial to acknowledge 

that while deep learning can deliver exceptional results in complex scenarios, there are 

situations where the more established the machine learning approach is, the more 

suitable it is. In some cases, limited dataset sizes or more superficial problem 

characteristics might not necessitate the level of complexity offered by deep learning. 

The research has a relatively small dataset (1200 data), and complex deep learning 

models might be complicated to train effectively and could suffer from overfitting. In 

such cases, simpler machine learning models might be more suitable. Complex deep-

learning models often require extended training and significant computational 

resources (Lai, 2019). The research only needs moderate accuracy, and machine 

learning models can provide satisfactory results. Several crucial considerations come 

into play when utilizing Deep Learning to process relatively small datasets. The 

foremost risk is overfitting, as complex Deep Learning models might memorize 

training data instead of grasping general patterns, leading to poor performance on new 

or real-world data. Addressing overfitting demands techniques such as regularization, 

dropout, and feature dimension reduction. 

Additionally, limited dataset representation hampers the model's ability to 

discern intricate patterns, restricting its generalization capacity. Striking the right 

balance of model complexity is essential, as overly complex models can exacerbate 

overfitting issues on small datasets. Moreover, Deep Learning models' substantial 

computational demands, especially for deep neural networks or large models, might 

not yield proportional benefits on small datasets (Wang et al., 2021). Lastly, data 
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augmentation proves vital; introducing variations through simple transformations like 

rotations or cropping bolsters the training dataset's diversity, curbing overfitting risks 

and bolstering generalization capabilities. Because this system needs to be adopted by 

agriculture, especially farmers, choosing machine learning, which is easier to interpret 

results and requires less memory, will be better than using deep learning.  

The application of image processing technology and the development of 

algorithms for identifying plant nutrition presented challenges. Large labelled datasets 

cannot be created because labelling pictures for training models is costly, time-

consuming, and laborious (Meir et al., 2023). However, using electroencephalograms 

from plant pathology experts can significantly reduce the labelling time while 

incorporating expert knowledge into artificial intelligence models. Another challenge 

is identifying nutritional inadequacies in crops, which can be addressed through image 

processing and Convolutional Neural Networks (CNN) (Mishra et al., 2023). CNN has 

shown high accuracy in detecting and diagnosing nutrient deficits in different cultivars 

(Raju & Narasimhaiah, 2023). Additionally, there are various approaches and 

techniques in image processing for identifying disease conditions in plant leaves, but 

the optimal approach is yet to be determined (Baraskar et al., 2023). These challenges 

highlight the need for further research and development in image processing and 

learning algorithms for plant nutrition recognition. 

Various classification algorithms have been used for leaves. These include K-

Nearest Neighbor Classifier (KNN), Probabilistic Neural Network (PNN), Genetic 

Algorithm, Support Vector Machine (SVM), Principal Component Analysis, Artificial 

Neural Network (ANN), Fuzzy Logic, Decision Tree (DT), Naive Bayes (NB), Radial 

Basis Function Neural Network, Random Forest, and Self Organizing Map (Bhosale 

et al., 2023) (Venkatakrishnan & Natarajan, 2023) (Aslan, 2023) (Mangaoang & 


