HEARTBEAT ANOMALY DETECTION METHOD BASED ON ELECTROCARDIOGRAM USING IMPROVED CERTAINTY COGNITIVE MAP

SUMIATI

ASIA e UNIVERSITY 2023

HEARTBEAT ANOMALY DETECTION METHOD BASED ON ELECTROCARDIOGRAM USING IMPROVED CERTAINTY COGNITIVE MAP

SUMIATI

A Thesis Submitted to Asia e University in Fulfilment of the Requirements for the Doctor of Philosophy

April 2023

ABSTRACT

Diagnosing heart defects is generally done through the Certainty Factor (CF) approach and the Cognitive Map (CM) approach. The first problem is the lack of the Certainty Factor method, the CF value has not shown a semantic relationship between one evidence and another, so that it forms a complete rule and shows the degree of confidence with a clear map of evidence. The second problem lies in the weakness of CM, namely cognitive maps do not model certainty in variables but only form deductive reasoning. This research was conducted using the Certainty Cognitive Map (CCM) approach used to diagnose heart disorders based on electrocardiogram data. This research has 3 objectives To develop algorithms for detecting heart conditions as either abnormal or normal using the modified cognitive map (CM) approach, To develop detection algorithms for anomalous heart conditions based on the enhancement of Certainty Factor (CF) technique, and To evaluate and validate the effectiveness of the new proposed model specifically the Certainty Cognitive Map (CCM) for identifying heart defects. The results of this test were carried out using the Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) approaches. Based on the results CF Method gave a Mean Squared Error (MSE) of 0.24 and Root Mean Squared Error (RMSE) of 0.48. The results of testing the CM Method gave a Mean Squared Error (MSE) of 0.80 and Root Mean Squared Error (RMSE) of 0.89, the results of testing the MCF Method with a Mean Squared Error (MSE) of 0.79 and gave Root Mean Squared Error (RMSE) of 0.89. The test results of the MCM Method gave a Mean Squared Error (MSE) of 0.65 and Root Mean Squared Error (RMSE) of 0.80 and the test results of the CCM Method with a Mean Squared Error (MSE) of 0.15 and a Root Mean Squared Error (RMSE) of 0.39. So the CCM method which is a modification of CF and modification of CM provides a better level of accuracy in diagnosing heart defects as compared to the CF method and the CM method

APPROVAL

This is to certify that this thesis conforms to acceptable standards of scholarly presentation and is fully adequate, in quality and scope, for the fulfilment of the requirements for the degree of Doctor of Philosophy

The student has been supervised by: **Prof. Dr. Titik Khawa Abdul Rahman** and cosupervised by: **Prof. Dr. Hoga Saragih**

The thesis has been examined and endorsed by:

Professor Dr. Nooritawati Md Tahir UiTM Examiner 1

Professor Dr. Salwani Daud UTM Examiner 2

This thesis was submitted to Asia e University and is accepted as fulfilment of the requirements for the degree of Doctor of Philosophy.

Professor Dr Siow Heng Loke Asia e University Chairman, Examination Committee (17 April 2023)

DECLARATION

I hereby declare that the thesis submitted in fulfilment of the PhD degree is my own work and that all contributions from any other persons or sources are properly and duly cited. I further declare that the material has not been submitted either in whole or in part, for a degree at this or any other university. In making this declaration, I understand and acknowledge any breaches in this declaration constitute academic misconduct, which may result in my expulsion from the programme and/or exclusion from the award of the degree.

Name: SUMIATI

S/10=dt/a

Signature of Candidate:

Date: 17 April 2023

Copyright by Asia e University

ACKNOWLEDGEMENTS

Alhamdulillah, semua pujian kepada Allah Subhanahu Ta'ala yang telah memberikan kemudahan dan hidayah, serta nikmat kekuatan bagi penulis untuk menyelesaikan tesis ini. Penulis mengucapkan terima kasih kepada seluruh civitas akademika Asia E University, terutama Professor Siow Heng Loke, Prof. Dr. Titik Khawa Abdul Rahman, memberikan kesempatan penulis menuntut ilmu ke Asia e University. Penulis ingin mengucapkan terima kasih kepada Emak tercinta Hj.Casmiah dan Bapak tercinta H.Sardjo dan mertuaku Ngadinem dan Sukidi karena selalu memberikan doa yang tak henti, serta suamiku tercinta Suhartoyo dan anak anak sayang Falih Akmal Pratama dan Bintari Harum Zahra yang selalu mendoakan agar selalu kuat untuk menyelesaikan penelitian ini. Penulis ingin mengucapkan terima kasih kepada terima kasih kepada semua pihak yang turut membantu terselesaikan penelitian ini, antara lain:

1. Prof. Dr. Titik Khawa Abdul Rahman, selaku supervisor 1 yang selalu memberikan dukungan dan waktu dalam membimbing penulis dalam upaya menyelesaikan penelitian ini.

2. Prof. Dr. Hoga Saragih, selaku supervisor 2 yang selalu sabar dan memberikan arahan dan masukan untuk menyelesaikan penyusunan penelitian ini.

3. Professor Dr. Nooritawati Md Tahir dan Professor Ts. Dr. Salwani Mohd Daud selaku penguji yang memberikan arahan dan masukan untuk menyelesaikan penyusunan penelitian ini

4. RSUD dr. Dradjat Prawiranegara dan dokter jantung yaitu dr, Suryadi, dr Kunti Nurul Umamy yang sabar membimbing penulis bidang kedokteran khususnya Jantung 5. Dr. Tb Ai Munandar, Agung Triayudi,P.hD, Dr. Viktor Vekky, R. Muhammad Firzatullah, M.Kom, Riska Sutriyati,M.Pd, Semua yang turut membantu selama dalam penelitian ini yang tak bisa disebutkan satu persatu.

Serang, April 2023

Sumiati

TABLE OF CONTENTS

ABSTRACT		ii
APPROVAL		iii
DECLARAT	ION	iv
ACKNOWL	AGMENT	vi
TABLE OF (CONTENTS	viii
LIST OF TA	BLES	X
LIST OF FIG	JURES	xii
LIST OF AB	BREVIATION	xiv
CHAPTER 1	INTRODUCTION	1
1.1	Background of the Study	1
1.2	Problem Statemnet	5
1.3	Objectives	6
1.4	Research Questions	6
1.5	Research Hypotheses	7
1.6	Operational Definitions	7
1.7	Justifications and Significance of the Study	7
1.8	Theoretical Contributions	8
1.9	Practical Contributions	8
	Contribution to Methodology	8
1.11	Structure of Thesis	8
CHAPTER 2	REVIEW OF LITERATURE	10
2.1	Introduction	10
2.2	Cognitive Map	11
2.3	Certainty Factor (CF)	12
	2.3.1 Calculation of Combined CF	14
2.4	Decision Tree	15
2.5	Electrocardiogram (ECG)	17
	2.5.1 Components of an ECG Instrument	20
	2.5.2 Detection of Abnormal Heart Disorder Based	20
	Electrocardiogram	
• •	2.5.3 Normal Heart Detection Based on Electrocardiogram (ECG	
2.6	Techniques for Abnormal Heart Detection	24
	2.6.1 Cognitive Map For Detecting Heart	25
	2.6.2 Certainty Factor For Abnormal Heart Detection	34
	2.6.3 Cardiac Defect Identification From Electrocardiogram Medi	
	Record	38
	2.6.4 Computational Method For The identification of Cardiac	40
~ -	Disorder based on of Electrocardiogram Medical Records	42
2.7	Measurement Of Model Performance Estimation	46
	2.7.1 Mean Squared Error (MSE)	46
•	2.7.2 Root Mean Squared Error (RMSE)	47
2.8	Conceptual Framework	47

2.9	Chapter Summary	48
CHAPTER 3	3 METHODOLOGY	49
3.1	Research Design	49
3.2	Population and Sampling	53
3.3	Instrumentation	53
	3.3.1 Assigning the Causality Of CM Using CF	54
3.4	Validity & Reliability	54
	3.4.1 Mean Squared Error (MSE)	55
	3.4.2 Root mean Squared Error (RMSE)	55
3.5	Data Collection Procedure	55
3.6	Research Ethics	56
3.7		57
	3.7.1 Certainty Factor	60
	3.7.2 Cognitive Map Approach	65
3.8	Chapter Summary	66
CHAPTER 4	ANALYSIS AND FINDINGS	68
4.1	Introductions	68
4.2	Profile of Respondents	68
4.3	Reliability of Measurements	69
4.4	Descriptive Analysis	70
4.5	Discussion of Findings	85
	4.4.1 Abnormal Heart Detection using Modified CM	85
	4.4.2 Detection of Heart Defect using CCM Approach	93
4.5	4.4.3 Assigning Cognitive Map Causality using CF Chapter summary	93 137
CHAPTER 5	CONCLUSION, IMPLICATION AND RECOMMENDATIONS	139
5.2	Introduction To develop algoritm for detecting heart conditions as either abno	139
5.2	or normal using the modified cognitive map (CCM) approach	139
5.3	To develop detection algorithm for anomalous heart condition ba	
5.5	the enchacement of certainty factor (CF) technique	141
5.4	To evalute and validate the effectiveness of the new proposed mo	
0.11	speciafically the certainty factor (CF) Technique	141
5.5	Limitation of the Study	142
5.6	Implications of the Study	143
5.7	Recommendation for Future Research	143
5.8	Chapter Summary	145
REFERENC	ES	146
APPENDICI	₹ S	151
Appendix A		151
Appendix B		152
Appendix C		168

LIST OF TABLES

Table		Page
2.1	The CF (Rule) value is obtained from the experts	14
	interpretation	
2.2	Research Review Cognitive Map for Detecting Heart	31
2.3	Overview of previous research related to Certainty	36
	Factor for Abnormal Heart Detection	
2.4	Overview Of Previous Studies Cardiac Defect	40
	Identification From Electrocardiogram Medical Record	
2.5	Review Of Previous Research Realted to	44
	Computational Methods for The Identifications Of	
	Disorder Based on Electocardiogram	
3.1	Research Framework	56
3.2	The CF (Rule) value is obtained From the Experts	61
	Interpretation	
4.1	Testing and Evaluation Of The CF,CM,MCF,MCM	69
	and CCm Models	
4.2	Information about the Abnormal Cognitive Map Nodes	100
4.3	Overvall Rules For Normal Heart Cases	102
4.5	Rules of Normal Heart Cases R1_11 until R1_15	111
4.6	Rules of Normal Heart Cases R1_16 until R1_21	114
4.7	Rules of Normal Heart Cases R1_22 until R1_28	118

4.8	Rules of Normal Heart Cases R1_29 until R1_36	124
4.9	Rules of Normal Heart Cases R1_37 until R1_45	130
4.10	Information about the normal Cognitive Map Nodes	137

LIST OF FIGURES

Figure		Page
2.1	This is the title of the first figure	12
2.2	Decision Tree Model	17
2.3	ECG waves	18
2.4	Intrepretation of ECG result each of the 12 leads the	21
	name I,II,III,aVR,aVL,aVF,V1,V2,V3,V4,V5 and V6	
3.1	Ethical Clinic	56
3.2	Normal Heart Detection Based on Electrocardiogram	57
	(ECG)	
3.3	Show ECG Abnormal	58
3.4	Research Flow	60
3.5	CF Model	63
3.6	Modification of CM with Original CF	66
	CCM Model	
4.1	Modification Of The CF Model with Original CM	71
	Approach	
4.2	Modification Of The CF Model With Original CF	77
4.3	CCM Model	80
4.4	The Process to detection Of Abnormal Heart Using	82
	ССМ	
4.5	Decision Tree Result From The Rapidminer Studio	86

Software Tool

4.6	Normal ECG	88
4.7	Show Abnormal ECG	89
4.8	Cognitive Map Of Abnormal Heart Which has a	99
	negative and positive causal relationshipp	
4.9	Normal Cognitive Map with a value of causality	137
	between evidence and the value of causality between	
	evidence and hypothesis	

LIST OF ABBREVIATION

CF	Certainty Factor
СМ	Cognitive Map
ССМ	Certainty Cognitive Map
AeU	Asia e University
ECG	Electrocardiogram
OSA	Obstructive Sleep Apnea
DCW	Dynamic Cepstral Warping
SEM	Structural Equation Model
FCM	Fuzzy Cognitive Map
РЈК	Jantung Koroner
DST	Dempster Shafer Theory
EKNN	Evidential K-Nearest
AV	Antrioventrikular
VV	Interventrikular
AS	Aortic stenosis
PSO	Particle Swarm Optimization
FCM	Fuzzy C-Means
OWA	Order Weighted Averaging
LVQ	Method Learning Vector Quantization

HDPSO	Hybrid Discrete Particle Swarm Optimazation		
NHL	Non Linier Algoritma Hebbian		
KNN	K-Nearest Neighbours Support Vector Machine (SVM)		
EKNN	Evidential K- Nearest		
NB	Naïve Bayes		
PCC	Pearson Correlation Coeeficient		

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Heart disease is one of the most common diseases and one of the factors causing the high mortality rate in Indonesia. Data in the field shows that the risk level for men to suffer heart disease higher than which of women. This is due to the habit of men who often smoke, which causes constriction of blood vessels, which triggers chest pain and shortens the breath. In addition, the narrowing of the blood vessels affects the hands and feet, which results in pain, tingling, numbness, coldness, and weakness.

The high mortality rate for heart disease is due to the lack of availability of cardiac specialist medical personnel, based on data from the Ministry of Health, Indonesia has only 5,290 cardiologist who have not spread evenly in Indonesia, especially for underdeveloped, frontier and outermost areas (3T) (Ministry of Health RI, 2017). The ECG tool does not currently have a feature that is currently able to analyze and identify the patient's heart condition automatically. To be able to find out the patient's heart condition, the ability of a cardiologist is still needed in order to interpret the results of measurement of heart muscle activities. This condition causes so many cases of heart disease that are often handled late because the analysis carried out takes a long time even through a lot of consideration of the results before confirming the patient's actual heart condition. In fact, with the development of information technology today, especially in the field of computing, difficulties in identifying heart disease early can be overcome.

Several studies in the field of computing have been carried out to contribute to the world of health, particularly in an effort to provide alternative solutions for analyzing heart disease. Researchers use the concept of data mining to diagnose abnormalities and heart disease in patients (Deng et al., 2017). Some of the approaches used to diagnose abnormalities and heart disease are the particle swarm optimization (PSO) algorithm and the neural network (Feshki & Shijani, 2016), prediction techniques (Shaikh et al., 2015), genetic neural networks (Amin et al., 2013) and radial base classification network techniques (Alsalamah et al., 2014; Amin et al., 2013). Several other studies such as those conducted (Lindow et al., 2016; Rawi & Al-Ani, 2013; Shortliffe & Buchanan, 1975) also discusses the same thing regarding the diagnosis ofheart disease using a certainty factor approach.

CF has its own advantages when carrying out the inference process in determining the final outcome of a disease diagnosis, such as it can solve problems related to incomplete knowledge. CF works based on statistical values with value intervals from

-1 to +1. In the CF concept, the main advantage it has is, each piece of evidence selected by the patient has a confidence value based on the level of confidence someone experiences the evidence (Lindow et al., 2016). Likewise, the rules which apply to the knowledge base, the value of CF is an important part of the rule which is formed whether certain evidence refers to the type of disease in question or not. This level of confidence shows how the expert believes that evidence must refer to the hypothesis. However, one of the main drawbacks of CF is, that the existing CF rule value does not necessarily show a semantic relationship between evidence and other evidence. CF does not discuss how a belief value relates to one piece of evidence with other evidence so that it forms a complete rule and shows the degree of confidence with a clear evidence map (Wang et al., 2009).

Apart from using CF, another approach used to diagnose heart disease is the concept of Cognitive Map (CM). The advantages of CM are in the decision-making process and classification process. Besides that, it can also diagnose a disease, and provide predictions in the treatment process, so that it is very helpful for medical personnel who still lack experience (Bourgani et al., 2013), besides that, it can diagnose a disease, and predictions in the treatment process, so that it is very helpful for medical personnel who still lack experience (Bourgani et al., 2013), besides that, it can diagnose a disease, and predictions in the treatment process, so that it is very helpful for medical personnel who still lack experience (Bourgani et al., 2013), used in decision making and prediction (Tsadiras & Margaritis, 1997). Another widely used approach in diagnosing heart disease is using CM (Hjelm, 2013). Several other studies such as those conducted (Ghaderyan & Abbasi, 2018; Hassan & Haque, 2017; Mathews et al., 2017; also discussed the same thing regarding the diagnosis of heart disease using the CM approach.

CM has the advantage of being able to show a causal relationship between one variable and another in the form of a semantic map. This relationship is indicated by the weight ranges of values -1, 0, and +1. Weight value> 0, has positive causality. CM is a qualitative decision model that is often used in decision making, This model easily organizes individual judgments, thoughts or beliefs about a given problem in a graphical representation containing various concepts and influences, However, the reasoning of this model presents several limitations, among others, that CM does not model uncertainty in changing permissibility, but only in the form of deductive reasoning (Sedki and de Beaufort, 2015), the sum of the values of the range of causality weights between one cognitive and another cognitive can be worth 0. If two cognitive pieces each have a weight range of +1 and -1, then the level of causality between the two cognitive will produce a weight of zero (0) or have no causality at all, whereas in

semantics the map shows that the two cognitive ways can be connected with a flow to describe the causality of both.

The research has the main objective of overcoming the limitations/drawbacks of both CF and CM especially for the need for diagnosing heart disease disorders. CM has a range of values that makes the causal relationship of cognitive disappear because the two cognitive weights are added. To overcome this, the CM concept is modified using the CF approach. The range of weight values owned by CF allows the calculation of the causality of two cognitive pieces is not equal to zero (0) because it is not done by adding the weight values, can be implemented with the CM approach so that it can be seen clearly the relationship between evidence and another to refer to a particular hypothesis.

The process of determining the causality value of two cognitive pieces is carried out based on the formulation of CF, Thus the weight of causality that is owned is the combined CF value between the two CF values of each cognitive. In the case of a diagnosis of heart disease, the combined concept of CF modification and CM modification is carried out to determine what kind of heart disease or defect of the patient experiencing based on the recorded data from the ECG. Data from the patient's medical record from the ECG are then traced based on the available knowledge base in which previously the database has been formed into CM. The values of the weight range of one cognitive with another on the knowledge base have been predetermined by the expert. As for the final value of causality between the evidence experienced by patients with heart disease and the knowledge base, it is applied by comparing the CF values between the input results of the user confidence level with the expert on the knowledge base. Based on the results of the study it is shown that the proposed technique is able to provide higher degree of accuracy in the diagnosis of heart disease and minimize the possibility of loss of cognitive intermediate causality such as CM. The proposed technique compares the expert causality value with the patien's causality value through CF values combined with a cognitive map.

1.2 Problem Statement

Based on this background, the formulation of the problem is that heart disease one of the most common diseases and and the factor causing the high mortality rate in Indonesia. The ECG does not have a feature which is able to automatically analyze and identify a patient's heart condition. To be able to find out the patient's heart condition, the ability of a specialist is still needed to be able to interpret the results of measurements of heart muscle activity.

In addition, the formulation of the problem the main drawback of the CF method is that the existing CF rule values do not necessarily show a semantic relationship between one piece of evidence and other evidence. CF does not discuss how a belief value relates to one piece of evidence with other evidence so as to form a complete rule and show the degree of confidence with a clear evidence map (Wang et al., 2009), and CM has a weakness, especially when adding values to the range of causality weights between one cognitive and another cognitive. If each of two cognitive pieces has a weight range of +1 and -1, then the causality value between the two cognitive will produce a weight of zero (0) or have no causality at all, whereas in semantics the map shows that the two cognitive can be connected with a flow to describe the causality of both, and the cognitive map does not model uncertainty in variables but only in the form of deductive reasoning (Sedki & De Beaufort, 2015).

1.3 Objectives

The objectives of the research are:

- i To develop algorithms for detecting heart conditions as either abnormal or normal using the modified cognitive map (CM) approach.
- ii To develop detection algorithms for anomalous heart condition based on the enhancement of Certainty Factor (CF) technique.
- iii To evaluate and validate the effectiveness of the new proposed model specifically the Certainty Cognitive Map (CCM) for identifying heart defects

1.4 Research Questions

The research questions of the research are:

- i How to modify CM to determine the value of causality between evidence and another using a certainty factor approach in cases of diagnosis of abnormal and normal heart defects?
- ii How to combine the certainty factor modification approaches and CM modification into a new method which is then called CCM for the need of identifying heart defects?
- iii How to determine the causality value of two cognitive pieces using the Certainty Factor formulation in CM?

1.5 Research Hypothesis

The hypothesis being tested is one of the most important aspects of statistics. Statistical practitioners use hypothesis testing techniques to draw conclusions whether the initial hypothesis they form in a problem is supported by data or not. Evaluate and validate the effectiveness of the new proposed model specifically the Certainty Cognitive Map (CCM) for identifying heart defects, developed an algorithm to detect cardiac

conditions as abnormal or normal using a modified cognitive map (CM) approach, and developed an algorithm for detecting anomalous heart conditions based on an increase in the Certainty Factor (CF) technique.

1.6 Operational Definitions

Variable	Definition operational variable	Measurin g instrumen t variable	How to measure variable	Measuremen t results (indicators) variable	Scale measurin g variable
Electrocardiogram medical record results	Failed case heart that diagnosed by heart doctor based on inspection echocardiogram written in record medical	Record medical	Observatio n data in the lab Hospital Dr Drajat Prawiraneg ara Hospital	Categorized as become: Normal heart abnormal heart	ordinal
Type Sex	Difference biological and physiological ones can differentiate man with that girl listed in the column gender on record medical	Record medical	Observatio n data in the lab Hospital Dr Drajat Prawiraneg ara Hospital	Categorized as become: 1. When gender man 2. When gender Woman	nominal

Table 1.1: Operational Definitions

1.7 Justifications and Significance of the Study

The study was conducted because heart disease is one of the main factors causing the high mortality rate. In addition, the current ECG tool is not yet able to analyze and identify the patient's heart condition, it still requires specialist skills. Based on these problems, this study aims to modify CM to determine the causality value of two cognitive units using Certainty Factor formulation in detecting heart rate anomalies, and to develop a CCM approach which is a combination of CM modification and CF modification for cardiac needs abnormality analysis, thus providing a better level of accuracy in diagnosing heart rate anomalies.

1.8 Theoretical Contributions

The study is able to contribute for knowledge of research studies in the field of Computational Intelligence, related to the development of CCM which is a modified of CF and modified of CM.

1.9 Practical Contributions

The study is able to contribute to medical science related to the analysis of electrocardiogram medical records with the CCM method which is a modified of CF and modified of CM for prediction models of abnormal and normal heart defects.

1.10 Contribution to Methodology

Contribute by modifying a modified Certainty Factor approach and a modified Cognitive Map, so that the result is a new method called CCM for the identification of cardiac abnormalities.

1.11 Structure of Thesis

The thesis is organized according to the following chapters :-

Chapter 1 – explained the background of study, problem statements, formulate the research objectives and research questions, justifications and contributions of the study

Chapter 2 – discussed and analysed the previous researches and techniques on heart abnormaly detection.

Chapter 3 – explained the research design and methodology developed and adapted in the study.

Chapter 4 – presented the results from the developed techniques and discussed the findings.